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Zusammenfassung

Trotz gesicherten Zusammenhangs zwischen niedriger Impfrate und dem Wiederauftau-
chen bereits weitgehend zurückgedrängter Infektionen, sind die durchschnittlichen Impfra-
ten in Deutschland meist nicht hoch genug, um Herdenimmunität zu gewährleisten. Das
Ziel der Bachelorarbeit ist es, dieses paradoxe Impfverhalten und die zugrundeliegenden
Dynamiken durch Kombination zweier bekannter Modelle und Einbeziehung von Pro-
zessen der Meinungsbildung zu verstehen und zu analysieren. Zunächst werden bekannte
Ansätze zur Modellierung von Impfskepsis sowie Meinungsbildung mit und ohne Rücksicht
auf Filterblasen präsentiert. Anschließend wird ein kombiniertes Modell, bestehend aus
einem Verhalten-Inzidenz-Modell und Zelotenmodell mit Verstärkung sowie dem Konzept
von Pay-off Funktionen aus der Wirtschaftsmathematik, aufgestellt und eine Bifurkations-
analyse durchgeführt. Es treten sowohl Pitchfork- als auch Sattel-Knoten-Bifurkationen
für einen Spezialfall (Parameter a = 0) und eine Hopf-Bifurkation im allgemeinen Fall
auf. Eine Takens-Bogdanov-Bifurkation wird vermutet, in dieser Arbeit aber nicht nach-
gewiesen. Im letzten Abschnitt wird das Modell auf offizielle Impfdaten gefittet, die die
bundesweite Impfabdeckung gegen C-Meningokokken auf Kreisebene darstellen. Das Mo-
dell bildet die Realität besonders gut ab, was zu den Schlussfolgerungen führt, dass Kom-
munikation bis zu einem gewissen Grad eine größere Auswirkung auf das Impfverhalten
hat als Krankheitsinzidenz. Es wird vermutet, dass die Inzidenz erst ab einem gewissen
Schwellenwert größeren Einfluss auf das Verhalten hat. Außerdem arbeiten Impfgegner mit
wesentlich mehr Verstärkung als Impfbefürworter, das heißt sie betonen und propagieren
ihre Ansichten sehr aktiv.

Abstract

Despite the established correlation between low vaccination rates and the resurgence of in-
fections that have already been largely suppressed, average vaccination rates in Germany
are usually not high enough to guarantee herd immunity. The aim of this bachelor’s
thesis is to understand and analyse this paradoxical vaccination behaviour and the under-
lying dynamics by combining two well-known models and including processes of opinion
formation. At first, known approaches to modelling vaccination hesitancy and opinion
formation with and without consideration of filter bubbles are presented. Subsequently,
a combined model consisting of a behaviour-incidence model and a zealot model with re-
inforcement as well as the concept of pay-off functions from economics will be set up and
a bifurcation analysis will be performed. Pitchfork as well as saddle-node bifurcations for
a special case (parameter a = 0) and a Hopf bifurcation in the general case were found.
A Takens-Bogdanov bifurcation is suspected, but not proven in this work. In the last
section, the model is fitted onto official vaccination data, which represent the nationwide
vaccination coverage against Meningococcus C at county level in Germany. The model
reflects reality pretty well, leading to the conclusion that communication has a greater
impact on vaccination behaviour than disease incidence to some extent. We suppose that
the influence of incidence on the behaviour increases after reaching a certain threshold.
Furthermore, vaccination opponents work with much more reinforcement than vaccination
proponents, i.e. they emphasise and propagate their views pretty actively.
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Abbreviations

BCM Bounded-Confidence Model

BVM Biased Voter Model

GDR German Democratic Republic

HIV Human Immunodeficiency Viruses

MMR Measles-Mumps-Rubella

ODE Ordinary Differential Equation

SIR Susceptible, Infected, Recovered

STIKO Ständige Impfkommission

WHO World Health Organization

The notions of anti-vax, anti-immunisation and anti-vaccination as well as anti-vaxxers
and vaccination opponents will be used interchangeably throughout this work.
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1 Introduction

The personal pursuit of health, wealth and happiness may be a familiar concept to any-
one. Everybody wishes to do his best on an individual base. Governmental institutions
involved in Public Health also strive for health, but on a population-based scale. They
aim at the best possible health conditions for the largest possible number of individuals
at the same time. Interestingly, the interests and opinions of citizens and Public Health
institutions do not always coincide, especially not when it comes to vaccination. As the
British philosopher Jeremy Bentham saw society in the second half of the 18th century,
the human was nothing more than a benefit-maximizer that pursued his personal inter-
ests without any respect of his environment [1]. So he introduced the greatest happiness
principle, a concept based on the opinion that an action was considered as good if it
was beneficial for the most possible individuals, and considered as bad, if it harmed the
community. More or less parallel to this principle, modern medicine and research have
shown the effect of herd-immunity, and how a disease can disappear within a population,
if enough individuals are immunised against it [2]. Following these lines of thoughts,
western governments and their Public Health institutions have shown a tendency in the
past few years to impose or at least encourage vaccination [3, 4]. But this did not fit
the personal needs every individual developed, valued and wanted to see pursued, so very
soon, vaccine opponents appeared. One of the “anti-vax pioneers” was Reverend Edmund
Massey, who lived in the 18th century and described vaccination as a “diabolical oper-
ation” [5]. The opposition to vaccination has always been present since then and has
grown remarkably in the past, mostly after being empowered by studies that published
allegedly shocking correlations between immunisation shots and the emergence of severe
disease or disabilities [6]. A well-known example would be the study from Wakefield et al.
in 1998 that pretended to have revealed the Measles-Mumps-Rubella (MMR) vaccine was
very likely to predispose to autism any child who had taken the shot [7]. Despite the very
small sample size n = 12, utterly speculative conclusions and even having been refuted
by multiple studies [8, 9, 10], those claims received an enormous amount of publicity and
had a tremendous impact on the way people perceived vaccines [6].

One tends to quickly classify and label individuals related to either the pro or anti-vax
camp, but [11] shows that vaccination opponents as well as proponents come from vari-
ous social and educational backgrounds or cultures. The main difference between those
two camps seems to be the willingness to propagate their ideas amongst others. While
individuals who do immunise themselves regularly are less involved in the propagation
of vaccines than the government or health institutions, the so-called “anti-vaxxers” are
pretty active and way less peripheral when it comes to spread their opinion [12]. Addition-
ally, the anti-vax movement has been shown to be very influential and misleading during
the opinion formation process, because of their excessive use of emotive and rhetorical
appeals and their tendency to cite medical studies followed by wrongly drawn conclusions
[13].

Furthermore, extreme religious convictions with general rejection of vaccines may favour
the reappearance of severe diseases, like the multiple outbreaks of measles in communities
of Christian Scientists [14] or ultra-orthodox Jews in the state of New York [15]. In Nige-
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ria, simple, non fact-based assumptions that the vaccine against poliovirus transmitted
Human Immunodeficiency Viruses (HIV) scattered all the immunisation efforts that had
been made in the previous 15 years [16]. As presented by Hussain in [17], this has not
been the only case where rumours and fake news were an impactful factor for the decision
finding within the population.

Apart from religious or ideological filter bubbles, vaccines are far away from being gener-
ally accepted. The results of the survey requested by the European Commission concern-
ing Europeans’ attitudes towards vaccinations [18], represented in Figure 1 below, show
a non-negligible mistrust in vaccines amongst European citizens. Despite being such a
minority, anti-vax groups show a remarkable impact on society and Hussain even calls
it “A regression in Modern Medicine” in [17]. This work will address this phenomenon
and try to understand it, by first presenting various existing models that all have tackled
the problem with different creative approaches and eventually proposing an own mod-
elling idea with the aim of integrating an opinion forming process into a compartmental
modelling approach.

Figure 1: Reasons for Not Having Any Vaccination in the EU [18]
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2 Hesitancy Model

Firstly, we will have to take a look at a way to model vaccination hesitancy and try to
understand how the individuals with a pro-vaccination opinion behave and where the
dependencies of their behaviour lie. The medical/biological approach over the past few
years has inter alia been to compose literature reviews and to form working groups such
as in [19] to be able to define so-called “vaccine hesitancy determinants”. Those are
categories of reasons, for which individuals would decide not to take a vaccine. Then, a
mathematical model of the dynamics had to be found, which takes into account the found
determinants and one can analyse mathematically to potentially define explicit influence
factors for the vaccine hesitancy dynamics.

Over time, several different models have been elaborated, but only one will be presented
in this thesis: the significant work of Bauch and Bhattacharyya in [20]. They developed
a behaviour-incidence model with the aim to describe the dynamics of the number of
vaccinated subjects x depending on different factors such as vaccine risk, efficacy and the
number of infectious persons. To get a better overview, all of the variables used in the
model will be listed here:

S : number of susceptible subjects in the population

I : number of infected subjects in the population

x : relative number of vaccinated subjects in the population

µ : birth and death rate of the population

ϵ : vaccine efficacy

β : infection rate

τ : case importation rate

γ : recovery rate

κ : scale factor

ω : vaccine penalty

(1)

The vaccine penalty ω basically describes the amount of risk a vaccination brings and κ
is a measure for the response speed of the population to external influences. A high value
for κ means that they change their opinion (pro-vaccine ⇄ contra-vaccine) immediately,
a low κ stands for a very slow reaction. The variables S and I follow the convention from
the well-studied Susceptible, Infected, Recovered (SIR) model developed by Kermack and
McKendrick in 1927 (for more details, see [21]). We may now define the model:
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Model 2.1 (Behaviour-Incidence Model by [20]). Let the context be defined as in
(1). Then, the dynamics of the according behaviour-incidence model are:

dS

dt
= µ (1− ϵx)− µS − βSI − τS

dI

dt
= −µI + βSI − γI + τS

dx

dt
= κx (1− x) (I − ω)

(2)

The modelling idea is that every person starts in the group of susceptible individuals S
and either stays in S, moves to the group of infected individuals I, or gets the vaccine
and immediately jumps into the group of recovered subjects R. As the main interest of
this model is the dynamics of vaccinated subjects x and once an individual gets into R,
a return to S or I is impossible, it is assumed that the recovered have left the model,
thus are not considered in Model 2.1. The dynamics of S are pretty straight-forward: the
only way to get into S, is to get born into the population, so the only positive term is the
birth rate µ. On the other hand, there are multiple ways to get ot of S: an individual
might either die (−µS), get infected by one individual of I (−βSI), be born as a child of
vaccinated subjects and get an immunisation shot at birth (−µϵx) or come from another
population as an infected and immediately jump from S to I (−τS).

I is designed in a similar way: newly infected subjects were either infected in the observed
population (+βSI) or came from another population and brought the disease with them
(+τS). Again, an individual leaves I at death (−µI) or after recovering from the disease
(−γI).

Finally, let us take a look at the dynamics of vaccinated subjects. Their growth factor con-
sists of three parts: the response speed κ as described above, the amount of anti-vaxxers
left that might switch sides (1−x) and a third term that we interpret as a “pay-off check”.
It computes the difference between the number of infected individuals I and the risk ω
of taking the vaccine, thus basically depicts the danger emerging from the disease, as
perceived by the population. When there is a high amount of infected individuals and the
vaccine penalty is low, the difference will be positive and quite big, leading to a higher
growth rate of x (more people will support vaccination and vaccine their children at birth)
and vice versa. When ω and I are approximatively the same, the growth and decrease of
x will turn out quite insignificant, respectively.

One may notice that the dynamics of the vaccinated subjects x as presented in Model
2.1 are quite basic and not realistic at all. They imply that the only influencing factor
in the switch between pro and anti-vax is this kind of “pay-off comparison” described
by the difference I − ω and attribute it an extreme power. According to this model, a
tremendous amount of anti-vaxxers could suddenly turn their opinion around completely,
despite their ideologies, fears and maybe also religious beliefs, whereas experience tells
us the exact opposite. Even in such dramatic context, the path from being a staunch
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anti-vaxxer to taking a flu shot into consideration can be tedious, even if the vaccine
is allegedly safe or herd immunity for the whole population could be reached with that
shot [22, 23, 15]. Additionally, exchange between those two camps or differently weighted
opinions, such as rumours or impactful people are completely excluded from this model,
yet highly present in the real world [16].

3 Opinion Model

The next step now is to understand how opinion formation works and what modelling
approach fits best for us. A lot of research has been done in this field with almost
every work having a different focus, due to the immense dimension of the subject. One
of the most famous models is the one presented by DeGroot in [24], which aims for
a consensus between all the involved agents. It is based on the presumption that one
individual analyses all of the opinions of the agents connected to him and then changes
his mind following an update rule that basically is weighted averaging of the personal and
surrounding opinions. This model has then been refined by Friedkin and Johnsen in [25],
who added the term of “innate opinion”. By doing so, every agent was extended by an
immutable vector that represented their opinion (values) as they would be if the agent was
in a social vacuum, thus influenced by nobody. Another very modern and quite interesting
modification has been done by Chitra and Musco in [26] by adding a new actor to the
Friedkin-Johnsen dynamics: a network administrator. He solely is allowed to change the
weights of the connections in the social network graph which resulted in a massive increase
of polarization in their model. Chitra’s and Musco’s research has shown that a change
of edge weight of 20% already lead to a polarization increase of 180%. This finding is
especially relevant for the modern times, where many of such network administrators exist
in form of recommendation algorithms [27]. Thus, many relevant information for opinion
building on a subject may not even be delivered to every individual and falsify the final
popular opinion, since there was no common information pool. Hegselmann and Krause
presented an approach in [28] that modelled the interaction in social networks when
considering bias and “confidence” during interaction: the Bounded-Confidence Model
(BCM). The design is quite simple: every agent has a continuous opinion value that
is uniformly distributed in the interval [0, 1] and only interacts with like-minded agents.
To be more specific: if the other agent’s opinion differs from the own opinion by less
than a fixed ϵ, both opinions are changed following an update rule, otherwise there is no
interaction at all. Vicario et al. extended the BCM to the Unbounded-Confidence Model
[29]. The dynamics are the exact same as for the BCM, except that they also added an
update rule for the agents that hold an opinion differing by more than the fixed ϵ. By
doing so, they were able to replicate the observed rejection of divided opinions while still
allowing some interaction, which is more realistic. Based on DeGroot’s model and also
considering bias and homophily, Dandekar, Goel and Lee proposed a generalization in
[30]. They based their work on the fact that individuals tend to interact more with like-
minded others (i.e. homophily) and on biased assimilation, a psychological phenomenon
which is perfectly explained in [31]:

“Perceptions of new evidence are interpreted in such a way as to be assimilated
into preexisting assumptions and expectations”.
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According to [30], homophily alone cannot polarize society, biased assimilation is needed
additionally. They also showed that some random-walk based recommending algorithms
always polarised when used on biased individuals. Finally, we would like to mention
the work done by Das, Gollapudi and Munagala in [32] where they defined the Biased
Voter Model (BVM), which is fundamentally different from the famous Williams-Bjerknes
model [33] for modelling tumour growth known under the same name. Its dynamics base
on the flocking model, which basically represents the biased assimilation from above, and
DeGroot’s model. They aimed at modelling how different opinions are formed in social
networks with informational influence. The term of informational influence has been
studied by Asch in [34] and the findings were: if an individual is told to answer a question
and given several anonymised responses that allegedly came from a peer group (they were
in fact constructed by the experiment’s conductor), the individual would still be likely
to give up his own answer and stick to the popular opinion, despite the lack of group
pressure in this setting.

3.1 Voter Model

As just presented, understanding how the process of forming an opinion behaves in a
population and how it can be influenced or manipulated has been a huge centre of interest
in the past and still is today. Several different approaches have been presented, all with
various focuses due to research aim and trade-offs for simplicity’s sake. Most of them
base on the well-known voter model presented by Liggett in 1985 [35], where a physical
approach is used and the work is built around particle behaviour and spins. But the
model of interest to us is taken from a completely different field of research: population
genetics. The Moran model, first introduced in 1958 by Moran [36], has originally been
developed to describe the survival of two different species within one population, but can
be fitted into our context pretty easily. The assumptions made in the model are:

1. Constant population size N

2. All individuals have the same chances to generate offspring (even dead individuals,
this is called “selfing”)

3. Constant birth/death rate µ

The model is defined as follows:

Model 3.1 (Moran Model by [36, 21]). Consider a total population size N ∈ N, with
Xt describing the number of individuals of species X at time t, Yt those of species Y and
Xt + Yt = N ∀t ∈ N. Then, the stochastic process counting the number of individuals of
species X and Y at time t is described by following transition rates:

Xt → Xt + 1 at rate µ Yt
Xt

N

Xt → Xt − 1 at rate µ Xt
1−Xt

N

(3)
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We may now easily reinterpret this model to depict the opinion of a population. If we
consider Xt and Yt as the number of supporters of opinion X and Y respectively and
replace “death” by “not sharing this opinion any more” and “birth” by “adopting this
opinion”, we get exactly what we want. But research has shown that one species will
die out on the long run. In our adopted voter model, an opinion would die out, which is
absolutely not the case, thus this very simple approach does not fit our needs very well
for the moment. This problem will be addressed in the next subsections.

3.2 Noisy Voter Model

The first modification of Model 3.1 we are going to present is the noisy voter model. It
addresses the problem of one species/opinion dying out on the long run, which is not
wanted at all in our setting. The line of thought is quite simple: instead of pretending
linear rates for the two transitionsXt → Xt+1 andXt → Xt−1, we consider probabilities.
This model has been presented by Granovsky and Madras in [37]. It is a simple, ergodic
variant of Liggett’s voter model, as mentioned in Subsection 3.1 and reads as follows:

Model 3.2 (Noisy Voter Model by [37]). Consider a population of size N ∈ N,
segregated into two groups: Xt and Yt, the supporters of opinion X or Y at time t,
respectively, such that N = Xt + Yt. An individual rethinks their opinion with rate µ
and random opinion adoption probability p. Furthermore we consider following transition
probabilities:

supporter of X sticks to his opinion/now supports Y: pX,X or rather pX,Y

supporter of Y sticks to his opinion/now supports X: pY,Y or rather pY,X
(4)

The two coherent probabilities add up to 1, respectively:

pX,Y + pX,X = pY,X + pY,Y = 1 (5)

Then, the transition rates of the stochastic process described by the noisy voter model are:

Xt → Xt + 1 at rate µYt

(
p
Xt

N
+ (1− p) pY,X

)
Xt → Xt − 1 at rate µXt

(
p
Yt
N

+ (1− p) pX,Y

) (6)

The transition rates of this model are very similar to those of Model 3.1, with some refine-
ments: the probabilities p and p◦,• with ◦, • ∈ {X, Y }. p will be called here the random
opinion adoption probability, since it depicts how likely it is that an observed individual
will adopt the opinion of another individual that has been randomly chosen out of the
population. Its counter probability 1 − p stands for the other possibility that the cur-
rently observed individual will adopt one of the two possible opinions without having to
be “directly influenced” by another individual, no matter what the current situation in
the population looks like (the opinion could not even be present in the population, but
still be adopted after this step). The four different p◦,• describe transition probabilities,
namely the probability that a supporter of X sticks to their opinion (pX,X) or changes it
(pX,Y ), analogously for supporters of Y . Now, the design of the transition rates may be
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explained in a pretty straight-forward manner: opinion X gains another supporter if a
Y -supporter “gets influenced” by a X-supporter and adopts their opinion with probability
p, or if a Y -supporter just randomly adopts one of the two opinions with probability 1−p
and it turns out to be opinion X with probability pY,X . The explanation for the loss of a
X-supporter works exactly analogously.

This adjustment of the Moran Model 3.1 seems very promising, as it eliminates the issue
of an opinion dying out and presents more realistic rates to model changes in opinions.
Furthermore, it adds the aspect of “opinion hopping” which is very desirable, due to its
prominence in reality. Schmitt presented the most common factors that influence the
vaccination rate in Germany [38]. According to german paediatricians, the most common
reasons are missed appointments and illness at the planned date of the shot, which both
are very accidental causalities and do not imply a strong opposition to vaccination in
general. As per the parents, the most relevant factors are the importance for the personal
development of the child to actually experience the illness and the frequency of side-effects
of the vaccine. Those facts correspond to our assumption that most of the individuals do
not have an immutable opinion on vaccines and tend to follow trends and news develop-
ment (such as a higher or lower risk of a certain vaccine) as well as differentiate between
the illnesses, thus make a new decision every time, whether they’re going to vaccinate or
not. In contrast, there is a non-negligible part of the population which changes its opinion
very seldom or even not at all, due to religious, ideological or esoteric reasons [14, 23,
15]. Even though the group of anti-vaxxers may not be very representative for the popu-
lation’s opinion (in Germany for instance, radical immunisation opponents are estimated
to represent 3-5% of the total population [22, 39, 40]), it should still be considered in our
model for various reasons. Firstly, vaccination hesitancy has been classified as one of the
top ten health threats in 2019 by the World Health Organization (WHO) [41]. Secondly,
recall the mistrust in vaccines amongst European citizens shown in [18] and represented
in Figure 1. This is not considered in Model 3.2, thus yet for us to improve.

3.3 Echo Chambers: Zealot Model

Our goal is to add the aspect of echo chambers [42] (also known as filter bubbles) into our
model, since it adds more realism to the simulation. As stated in Subsection 3.2, there
is a small, but non-negligible part of the population who stick to their opinion pretty
strictly and uncompromisingly. The reasons for this behaviour can be various, but what
is of interest for us is to integrate this fact into our model’s dynamics. A big achievement
in this field of study has been made by De Aguiar et al. [43, 44, 45]. They presented a
model that operates on a network with N +N0 +N1 nodes, where all of the nodes either
commit to state 0 or 1, which is encoded in a private state. Every single one of the N
nodes is able to change its opinion freely, those will be called “free nodes” in the following.
In contrast, the N0 and N1 nodes are stuck with state 0 and 1, respectively. These two
groups represent the part of the population which rethinks its opinion very seldom, or
as in this case: never, as mentioned in Subsection 3.2. The scientific community agreed
on a common name for agents with this kind of behaviour: zealots [46, 44, 45]. In [44],
the model considers discrete time steps and selects a random free node at every step and
updates its private state following a simple rule:
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1. State stays the same with probability p

2. State of a random connected neighbour is adopted with probability 1− p

They also showed that this model already may simulate various different situations such as
dynamics of small external magnetic fields, elections, spread of epidemics and population
dynamics. Again, the electoral/voting approach can easily be reinterpreted as vaccination
behaviour to fit our needs. When considering a fully connected network (which is also
the case in our setting), De Aguiar et al. named the probability to have m free nodes in
state 1 at time t Pt (m) and were able to compute the dynamics of the next time step:

Pt+1 (m) = Pt (m)
[
p+

1− p

N (N +N0 +N1 − 1)

×
(
m (m+N1 − 1) + (N −m) (N +N0 −m− 1)

)]
+ Pt (m− 1)

1− p

N (N +N0 +N1 − 1)
(m+N1 − 1) (N −m+ 1)

+ Pt (m+ 1)
1− p

N (N +N0 +N1 − 1)
(m+ 1) (N +N0 −m− 1) .

(7)

Only the mid part of these dynamics will be clarified in the explanation of the transition
rates (8), an exhaustive discussion may be found in [43, 44].

We may now present a definition of the zealot model as defined by the transition prob-
abilities (7), but with the simple difference that we allow self-connection in the graph.
In the population dynamics setting this would mean some kind of asexual reproduction,
which might not be needed, but in our context it means “self-influencing” which is totally
possible. The model reads as follows:

Model 3.3 (Zealot Model for Two Parties by [43, 44, 45]). Consider a population
of size N ∈ N, with Xt, Yt ∈ {0, . . . , N} supporters of opinion X and Y at time t,
respectively. Let N = Xt+Yt. Furthermore, let NX and NY > 0 be the number of zealots,
that support opinion X and Y , respectively. An individual may reconsider his opinion
with rate µ, select another individual or zealot and copy their opinion. The probability to
be chosen during this reconsideration process is the same for all individuals and zealots.
Then, the transition rates of the underlying stochastic process are:

Xt → Xt + 1 at rate µ (N −Xt)
Xt +NX

N +NX +NY

Xt → Xt − 1 at rate µXt
N −Xt +NY

N +NX +NY

(8)

The transition rates might not be obvious after considering the transition probabilities (7),
so a derivation will be done here. First, we will reinterpret all the terms for transparency’s
sake. We do not consider nodes any more, but individuals in a population and they are
not in state 0 or 1, but have the opinion X or Y . Pt+1 (m) consists of three parts:
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1. there were already Xt supporters of X and their final opinion didn’t change

2. there was one supporter less and one individual’s opinion switched from Y to X

3. there was one supporter more and one individual’s opinion switched from X to Y

Since the reasoning for the two transition rates is the exact same, we will just derive the
rate for Xt → Xt + 1, thus only consider the mid probability of (7). It describes the
transition m− 1 → m, which is exactly equivalent to what we want, given that we do not
consider the number of supporters m any more, but the stochastic process Xt. Pt (m− 1)
may be omitted (†), as it is just relevant for the probabilistic approach, whether we fall
into that case or not. Then, we modify the denominator to fit our approach with the
“self-influencing” (⋆). We know that the probability for an individual to overthink his
opinion in the model of [43, 44] is 1 − p, so we may define µ := 1 − p (‡). After simply
rearranging the leftover fractions and replacing the probability that N −m+1 nodes are
in state 0 with terms of the stochastic process (as defined in Model 3.3: N = Xt + Yt),
we get the wanted transition rate ρ from (8). In formulas:

Pt (m− 1)
1− p

N (N +NX +NY − 1)
(m+NX − 1) (N −m+ 1)

(†)
↪→ 1− p

N (N +NX +NY − 1)
(m+NX − 1) (N −m+ 1)

(⋆)
↪→ 1− p

N(N +NX +NY )
(m+NX − 1) (N −m+ 1)

(‡)
↪→ µ

N(N +NX +NY )
(m+NX − 1) (N −m+ 1)

↪→ µ

(
1− m− 1

N

)
(m− 1) +NX

N +NX +NY

↪→ µ (N −Xt)
Xt +NX

N +NX +NY

=: ρ

This model looks very promising and almost suits our needs, but still lacks one aspect:
reinforcement. This means that individuals, whose life is predominantly taking place in
a filter bubble, are less likely to interact with a group of individuals who is representative
for the population. Their social contacts will rather all be inside the filter bubble, thus
all be like-minded and lead to the opinion to never change or even to enhance.

Research has shown that most of the populist parties and candidates in Europe, as well
as in the USA can be determined quite easily, since their parameter of reinforcement
turns out to be pretty high [47]. In Germany for instance, the extreme right-wing party
“Alternative für Deutschland” and the extreme left-wing party “Die Linke” both show
high reinforcement parameters. Additionally, the reinforcement of the extreme right-wing
seems to be linked with the German federal states that used to be part of the German
Democratic Republic (GDR), whilst there seem to be no geographical connections to the
reinforcement of “Die Linke”. During the US presidential election 2016, the republican’s
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reinforcement factor tripled, most likely due to Trump’s populist arguments [47]. Rein-
forcement seems to play a major role in those election processes, since it “boosted” an
opinion, which did not depict the preponderant opinion in the population, to still get a
favourable election result. We want this factor to be included in our approach, thus two
models will be presented in Subsection 3.4 that take reinforcement into account.

3.4 Mean Field Voter Model and Zealot Model with Reinforce-
ment

We will start this subsection off by presenting the mean field voter model that has been
introduced by Sano et al. [48]. It is yet again a model built to describe election dynamics,
but we have clarified the parallel between elections and vaccine opinion multiple times.
The aspect of reinforcement mentioned above is not implemented in this model, but
another interesting approach to simulate realistic dynamics between zealots and “normal”,
free individuals. In Model 3.3 as well as in Model 3.4, the zealots are considered as
“outside” of the population, categorised into the groups NX , and NY . Sano’s approach is
to include the zealots into the population, s.t. N = Xt + Yt +NX +NY (for a two-party
setting, as we have been following in this work). So, the population consists of two groups:
the free voters, whose opinion may fluctuate and change, and the zealots, whose opinion
is immutable. The decisive aspect are those two assumptions:

1. Zealots influence free voters, not inversely

2. Not every zealot actively influences free voters, but only a fraction ϕX and ϕY ,
respectively

The transitions between opinions for a free voter are the same as described in Model 3.3.
With a given rate µ, a voter rethinks his opinion, randomly picks another voter out of the
population and copies their opinion. Additionally, this process may now be influenced by
the zealots with rate ϕX and ϕY , respectively, so that the change of opinion is favourable
for the opinion they root for.

Sano assumes that only a part ϕX , ϕY , respectively, of the zealots would influence the
opinion of free nodes. An assumption we do not totally agree with. In our perception,
the pro-vaccination zealots mainly consist of the government, health bodies and their
presence in the media (public health programs, mandatory vaccines), thus they will very
actively propagate their opinion. Therefore we consider every pro-vaccine zealot as active
in our setting. On the other side, we assume that the anti-vax zealots behave quite the
same and propagate their arguments and ideas very actively [13, 22]. Hence, we do not
think that an “active influence rate”, as it has been introduced by Sano will be needed
in our model. Still, his work had to be presented here, because it addresses the issue in a
very interesting innovative way. In the following, we will introduce the reinforced zealot
model, which perfectly fits our needs. All of the new terms and notation will be explained
in the subsequent paragraph. The model reads as follows:
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Model 3.4 (Zealot Model for Two Parties with Reinforcement by [47]). Consider
a population of size N ∈ N, where Xt, Yt ∈ {0, . . . , N} describe the amount of supporters
of opinion X and Y at time t, respectively. Let N = Xt + Yt. Furthermore, let NX

and NY > 0 be the number of zealots that support opinion X and Y , respectively. An
individual of the population (not a zealot) may reconsider his opinion with rate µ via the
same process as described in Model 3.3 and in addition of the contact rates θX , θY . Then,
the transition rates of the stochastic process are:

Xt → Xt + 1 at rate µ (N −Xt)
θX(Xt +NX)

θX(Xt +NX) + (N −Xt +NY )

Xt → Xt − 1 at rate µXt
θY (N −Xt +NY )

(Xt +NX) + θY (N −Xt +NY )

(9)

When we take a look at (8), we notice there is just a slight difference between the tran-
sition rates stated there and the ones we are currently looking at. It consists of the two
contact rates θX and θY . They describe the probability of a Y -supporter getting in touch
with a X-supporter (θX) and vice-versa. With this additional information, the derivation
of the transition rates of (9) is pretty easy:

For Xt → Xt + 1 we need a supporter of Y to firstly, reconsider his opinion (happens at
rate µ) and secondly, actually change it to X. As stated in the opinion change dynamics in
Model 3.3, which are also used here, this only happens if said supporter gets influenced by
a supporter of X. So, we multiply the possible number of encounters with X-supporters
(Xt +NX) with the probability θX of getting out of the “Y filter bubble”, divided by all
possible encounters. The rate of the transition Xt → Xt−1 is derived exactly analogously.

4 Presentation of the Combined Model

Lots of different modelling approaches to capture the essence of opinion formation in a
(still very simplified) population and spectrum of opinions have been presented in Section
3. We looked at the transitions of some of them and concluded that Model 3.4 fits
our assumptions about the behaviour of vaccine hesitancy best. In this section, we will
present a model for the dynamics of vaccine hesitancy, whose two fundamental parts,
the equation structure and the opinion formation process, will be inspired by Bauch’s
behaviour-incidence model (2.1) and by the reinforced zealot model (3.4). During model
design, several approaches to render the opinion formation and influencing process in the
model more realistic were considered. The notion of pay-off functions taken from the field
of financial mathematics seemed to suit our needs best and was strongly investigated. For
simplicity’s sake, the aspirations to make use of an actual pay-off function have been put
down and we introduced a pay-off parameter, as will be described in the following. Firstly,
we will derive the transition rates for the stochastic process Xt as they are described by
our model. Then, we will compute the deterministic limit to receive a system of Ordinary
Differential Equations (ODEs), which we may then analyse.



4.1 Derivation of the Transition Rates 15

4.1 Derivation of the Transition Rates

To be able to derive the transition rates, we have to state the model behaviour we wish
for. The transition rates of (9) are already quite nice, but do not fit our needs entirely.
We want to integrate the aspect of mutual influence between the individuals in the pop-
ulation and the personal “pay-off” everybody computes in their heads before making a
somewhat important decision. One could come up with a very sophisticated and realistic
“pay-off function” for both pro and anti-immunisation parties and integrate it into the
model, thus tremendously raise the complexity. We figured that a simpler way of doing
so would be to modify the two parts of the extended population that are already used
(Xt +NX and N −Xt +NY ) so that they become a pro-vaccination and anti-vaccination
part. Yet again, to reduce complexity, the factor considered as most relevant for the
personal pay-off computation of an individual that is rather tending towards vaccinating,
is the prevalence of the disease, described by aI with a ∈ N and I as in (1). Whereas for
the anti-vaccination part, we introduce another factor Ω (I) : [0, 1] → R+ that describes
an anti-vaccination influence in the thought process (an anti-vax study, a big newspaper
writing an article against it etc.), depending on the amount of infected individuals I.
Taking all of these thoughts into consideration, we propose the following transition rates:

Model 4.1 (Stochastic Process within the Combined Model). Consider the same
context as in Model 3.4. Additionally, let nX , nY , a ∈ N be scaling factors and
Ω (I) : [0, 1] → R+. They all describe different influences on the vaccination behaviour of
the population and let I be the number of infected individuals as defined in (1). Then, the
rates of the underlying stochastic process read as:

Xt → Xt + 1 at rate µ (N −Xt)
θX(Xt +NX + aI)

θX(Xt +NX + aI) +
(
N −Xt +NY + Ω(I)N

)
Xt → Xt − 1 at rate µXt

θY
(
N −Xt +NY + Ω(I)N

)
(Xt +NX + aI) + θY

(
N −Xt +NY + Ω(I)N

)
(10)

By following common SIR-modeling approaches with standard incidence, we can write
down a first draft of our model:

Ṡ = −βS I
N

+ bN

(
1− Xt

N

)
− δS

İ = βS
I

N
− αI − δI

Ṙ = αI + bN
Xt

N
− δR

(11)

This only takes into account the susceptible, infected and recovered individuals, but we
also want to consider the amount of vaccinated subjects, which is currently described by
a stochastic process:

Xt → Xt ± 1 with rates as described in (10)

In this context, β is the rate of infection and α the recovery rate, b stands for the birth
and δ for the death rate of the population. As one can see, this is a stochastic process
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mixed up with a three-dimensional system of ODEs, leading to a fourth dimension as
soon as Xt will be included. But we want to work solely with a system of ODEs, that has
less than four dimensions preferably. To do so, we will have to compute the deterministic
limit of all of the components of the model (S, I, R and Xt). Additionally, we will use
Ṅ = bN − dN (another SIR-model commonalty). We define:

s :=
S

N
, i :=

I

N
, r :=

R

N
, x :=

Xt

N
(12)

We may now compute:

ṡ =
NṠ − SṄ

N2
=
Ṡ

N
− S

N

Ṅ

N
(11,12)
= −βsi+ b

(
(1− x)− s

)
i̇ =

Nİ − IṄ

N2
=

İ

N
− I

N

Ṅ

N
(11,12)
= βsi− i (α + b)

ṙ =
NṘ−RṄ

N2
=
Ṙ

N
− R

N

Ṅ

N
(11,12)
= αi+ bx− rb

Note that ṙ is not needed in the model any more, since it occurs in none of the other
equations (it will be shown in Subsection 4.2 that it does not occur in ẋ neither), leading
to our model being four-dimensional, but virtually three-dimensional! This will facilitate
the upcoming model analysis tremendously.

4.2 Computation of the Deterministic Limit

In addition to the context of Model 4.1, we will assume that the two zealot groups NX

and NY scale linearly with the total population size N :

Proposition 4.1. Let i := I
N
, nX := NX

N
, nY := NY

N
and ω (i) := Ω(I)

N
. Then, the deter-

ministic limit for x (t) := Xt

N
reads

ẋ =− µx
θY
(
1− x+ nY + ω (i)

)
(x+ nX + ai) + θY

(
1− x+ nY + ω (i)

)
+ µ (1− x)

θX(x+ nX + ai)

θX(x+ nX + ai) +
(
1− x+ nY + ω (i)

) (13)

The proof of the claim above will be quite lengthy, but mainly computational. Firstly,
we will state the master equations of our model, i.e. a system of first-order ODEs which
describes how our modelled system behaves over time in a probabilistic way. In other
words: the system is in state i with probability pi and the master equations are differential
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equations of those pi. Afterwards, we will make use of these and compute the Kramers-
Moyal expansion: a generalisation of the Fokker-Planck equation that arises. Both of
these concepts are well explained in [49]:

Definition 4.1 (Fokker-Planck Equation for One Variable by [49]). Let B (v, t) be
the distribution function for one-dimensional Brownian motion and D(1)(x), D(2)(x) with
D(2)(x) > 0 the drift and diffusion coefficient, respectively. Both of them may also depend
on time. Then, the general Fokker-Planck equation for one variable x reads:

∂t
(
B (v, t)

)
=
[
−∂x

(
D(1)(x)

)
+ ∂2x

(
D(2)(x)

)]
B (v, t) .

Definition 4.2 (Kramers-Moyal Expansion by [49]). The general expansion of a
Fokker-Planck equation that does not stop after the second derivative and also contains
higher ones with respect to x, has infinite number of terms and is called the Kramers-Moyal
expansion. It reads:

∂t
(
B (v, t)

)
=

∞∑
i=1

(−∂x)i
(
D(i)(x)B (v, t)

)
.

One will notice whilst reading the proof below that the Kramers-Moyal expansion which
will be computed is only a sum of two, not infinitely many components. This is due to
rigorous arguments such as Langevin equations and Gaussian δ-correlated noise, which
would blow up the scope of this work. To gain any more insights on those arguments and
the theory behind Fokker-Planck Equations, how they arise and what their purpose is, we
highly encourage reading Risken’s book [49]. We may now state the proof of Proposition
4.1:

Proof. For better readability and improved simplicity, we will refer to the transition rates
of the model as:

F+ (Xt) :=
θX(Xt +NX + aI)

θX(Xt +NX + aI) +
(
N −Xt +NY + Ω(I)N

)
F− (Xt) :=

θY
(
N −Xt +NY + Ω(I)N

)
(Xt +NX + aI) + θY

(
N −Xt +NY + Ω(I)N

)
Having clarified the notation, the master equation now reads:

ṗk (t) = F+ (k − 1)× pk−1 (t) + F− (k + 1)× pk+1 (t)

−
(
F+ (k) + F− (k)

)
× pk (t)

(14)

In the next step, we will compute the Kramers-Moyal expansion of (14). To do so, we
assume:

pk(t) ≈ hu

(
k

N
, t

)
, h =

1

N
and x = hk. (15)
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Again, we define for simplicity by expanding F+(x) and F−(x) with
h
h
, respectively:

f+(x) :=
θX(x+ nX + ai)

θX(x+ nX + ai) +
(
1− x+ nY + ω (i)

)
f−(x) :=

θY
(
1− x+ nY + ω (i)

)
(x+ nX + ai) + θY

(
1− x+ nY + ω (i)

) (16)

We compute:

∂t

(
u

(
k

n
, t

))
=

1

h
ṗk (t)

(14,15)
=

1

h

[
F+(k − 1)hu(x− h, t) + F−(k + 1)hu(x+ h, t)

−
(
F+(k) + F−(k)

)
hu(x, t)

]
=

1

h

[
µ
(
1− (x− h)

)
f+(x− h)u (x− h, t)

+ µ(x+ h)f−(x+ h)u (x+ h, t)

−
(
µ(1− x)f+(x) + µxf−(x)

)
u (x, t)

]

(17)

From there we can compute the Taylor series of second order for the x − h and x + h
terms:

µ
(
1− (x− h)

)
f+(x− h)u (x− h, t)

= µ(1− x)f+(x)u (x, t)− h∂x
(
µ(1− x)f+(x)u

)
+

1

2
h2∂2x

(
µ(1− x)f+(x)u

)

µ(x+ h)f−(x+ h)u (x+ h, t)

= µxf−(x)u(x, t) + h∂x
(
µxf−(x)u

)
+

1

2
h2∂2x

(
µxf−(x)u

)
(18)

We may now resume the computations (17) from above, add those new results and com-
pute the Fokker-Planck equation:

∂t

(
u

(
k

n
, t

))
= . . .

(15,18)
= −∂x

(
µu(x, t)

[
(1− x)f+(x)− xf−(x)

])
+

1

2N
∂2x

(
µu(x, t)

[
(1− x)f+(x) + xf−(x)

]) (19)

So, for N → ∞:

∂t

(
u

(
k

n
, t

))
= − ∂x

(
µu(x, t)

[
(1− x)f+(x)− xf−(x)

])
(20)
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By the definition in (16), this means that the ODE due to the drift term in case N → ∞
reads

ẋ =− µx
θY
(
1− x+ nY + ω (i)

)
(x+ nX + ai) + θY

(
1− x+ nY + ω (i)

)
+ µ (1− x)

θX(x+ nX + ai)

θX(x+ nX + ai) +
(
1− x+ nY + ω (i)

)
Which is exactly the result stated in (13)

To get a better understanding of the dynamics that are hidden in those equations, we
propose to take a look at Figure 2. The interactions should then be clear and especially
the fact, that there is no interaction between neither s and r, nor i and r, which is the
reason r does not appear in the definition of Model 4.2.

Figure 2: Dynamics of the Combined Model

Individuals Opinions

recovery αi

in
fe
ct
io
n
β
si

Susceptible

s

death bs

Infected
i

death bi

Recovered
r

death br

pro-vaxx birth bx

x
pro-vaxx

anti-vaxx birth b(1− x)
anti-vaxx

1− x

µ(1− x)f+(x)µxf−(x)



20 4 PRESENTATION OF THE COMBINED MODEL

4.3 Definition of the Combined Model

Now that all the computations are done, we may regroup all of the results and formulate
the system of ODEs that describes our model:

Model 4.2 (Combined Model). Consider a population of size N ∈ N, where Xt ∈
{0, . . . , N} and N − Xt describe the amount of supporters of opinion X and Y at time
t, respectively. Furthermore, let NX and NY > 0 be the number of zealots that support
X and Y , respectively. Let α, β, a, b ∈ N, with the same meaning as in (11) and ω (i)
just as in (13). An individual of the population (who is not a zealot) may reconsider his
opinion with rate µ ∈ N via the same process as described in Model 3.3 and in addition
of the contact rates θX , θY ∈ N. Let S ∈ {0, . . . , N} and I ∈ {0, . . . , N} describe the
amount of susceptible and infected individuals, just as in (1). Now, rescale S, I and Xt

as done in (12) and assume NX and NY to scale linearly with the population size N , as
in Proposition 4.1. Then, the model reads as follows:

ṡ = −βsi+ b
(
(1− x)− s

)
i̇ = βsi− i (α + b)

ẋ = −µx
θY
(
1− x+ nY + ω (i)

)
(x+ nX + ai) + θY

(
1− x+ nY + ω (i)

)
+ µ (1− x)

θX(x+ nX + ai)

θX(x+ nX + ai) +
(
1− x+ nY + ω (i)

)
(21)

4.4 Bifurcation Analysis

This Subsection is dedicated to the analysis of the proposed model in order to understand
it better and to get a glimpse at what it is capable of. A major part of this is the
determination of stationary points, also known as equilibrium points, and bifurcation
analysis where we will try to find all the bifurcations the system undergoes. As far as
equilibria go, they should be a familiar concept from the theory of ODEs. Consider
f(x) ∈ C1(Rn,Rn) and ẋ = f(x). A point x̂ with f(x̂) = 0 is called an equilibrium point.
Regarding bifurcation analysis, this work will not be able to give a full introduction to
it since it represents an extensive topic. For everybody interested in diving deeper into
bifurcations and model dynamics, we recommend reading Kuznetsov’s, as well as Hale and
Koçak’s books [50, 51]. We will restrict ourselves on briefly presenting the bifurcations
mentioned in this work:

Definition 4.3 (Pitchfork Bifurcation in 1D by [21]). Consider x(t) : R → R. Let
a stationary point exist that is stable for parameter values µ ≤ µ0. Additionally, let two
new stationary points show up for parameter values µ > µ0 and let those two new points
be stable, whilst the original stationary point becomes unstable. So, there is a Pitchfork-
bifurcation at the parameter value µ0 and its normal form reads:

ẋ = µx− x3 (22)
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Definition 4.4 (Saddle-Node Bifurcation in 1D by [21]). Consider x(t) : R → R.
A bifurcation with bifurcation parameter µ and normal form

ẋ = µ− x2 (23)

is called a saddle-node bifurcation.

Note that the normal form of the saddle-node bifurcation implies no existing fixed points
for µ < 0, exactly one for µ = 0 and two for µ > 0. This is why they are also called
“blue-sky-bifurcations”, as they seem to appear “out of nowhere” [21].

Definition 4.5 (Hopf Bifurcation by [51]). Let z : Rn → Rn with n ≥ 2. Consider
the continuous dynamic system ż = f(z) and its linearisation, described by its Jacobian
J(z). Let ẑ be a stationary point of the system and consider the linearisation Jẑ := J(ẑ)
at that point. If

∀λ ∈ spec (Jẑ) \ {λ∗, λ∗} : Re(λ) < 0 ∧ Re(λ∗) = 0

holds, then a Hopf-bifurcation occurs as soon as the pair λ∗, λ∗ crosses the imaginary axis
due to a bifurcation parameter change.

We may now begin with the analysis of our system.

After trying several different approaches, we settled on the assumption to fix the “anti-
vax influence”: ω (i) := a (1− i). With this adjustment, the model indicates a tendency
towards vaccination for increasing i and a tendency towards not getting vaccinated for
decreasing i, which we esteem to be realistic. By additionally uncoupling ẋ and i̇, such
that the number of infected individuals has no more influence on the number of pro-
vaxxers, we even know about two bifurcations in the model now! This can be achieved
by setting a = 0 and falling back to the model presented by Müller and Tellier in [47]. As
shown there, the following proposition may be formulated:

Proposition 4.2 (Pitchfork Bifurcation for Special Case by [47]). Consider Model
4.2. For nX = nY = n, θX = θY = θP and a = 0, x = 1

2
is always a stationary point and

shows a pitchfork bifurcation at θP with

θP =
1− 2n

1 + 2n

Before we begin with the proof, we would like to remark that s, as well as i have not
been mentioned in Proposition 4.2, since Müller and Tellier analysed a one-dimensional
system in their work. But as will be seen below, we can easily construct a stationary
point (s∗, i∗, x∗) by setting s∗ and i∗ as in (24) and (25) and x∗ = 1

2
.

Proof. This can quickly be shown by computing the Taylor expansion of third degree at
the point x = 1

2
of (13)’s right-hand-side. When replacing θX and θY with θP , one will see

that the linear term disappears, leaving only the term of third order and the rest term.
Thus, following the normal form (22), the presence of a pitchfork bifurcation at that point
has been shown. For the detailed proof see [47].
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As also shown by Müller and Tellier, the pitchfork bifurcation changes into a saddle-node
bifurcation for slightly differing numbers of zealots nX and nY .

Writing down a general stationary point analytically for our model turns out to be very
unpractical, but we are able to produce a similar result to the one presented in Proposition
4.2, without having to restrict a = 0:

Proposition 4.3 (A Stationary Point of the Combined Model). Presume (s∗, i∗, x∗),
i∗ ̸= 0 is a stationary point of Model 4.2. For nX = max{a (1− 2i∗) , 0},
nY = a (2i∗ − 1)+nX and θX = θY = 1−2n

1+2n
with n := ai∗+nX , there always is a stationary

point at x∗ = 1
2
.

Proof. We set x∗ = 1
2
. It is now very easy to write down s∗ and i∗:

0
!
= ṡ∗

(4.2)
= −βs∗i∗ + b

(
1

2
− s∗

)
⇔ s∗ =

b

2βi∗ + 2b

(24)

0
!
= i̇∗

(4.2)
= βs∗i∗ − αi∗ − bi∗

i∗ ̸=0⇔ i∗ =
b

2 (α + b)
− b

β

(24)⇒ s∗ =
α + b

β
(25)

So we have a stationary point at
(

α+b
β
, b
2(α+b)

− b
β
, 1
2

)
. Now we have to adjust the param-

eters occurring in (13) such that ẋ = 0 holds. To do so, we will compare the two parts
of ẋ and make sure they are the same, which will make them cancel each other out and
yield the wanted result. We immediately see that µx = µ (1− x) for x = x∗ = 1

2
. We

may now write down two equations that have to hold to ensure a stationary state at x∗:

θX

(
1

2
+ nx + ai∗

)
= θY

(
1

2
+ nY + a(1− i∗)

)
(26)

θX

(
1

2
+ nX + ai∗

)
+

1

2
+ nY + a(1− i∗) =

1

2
+ nX + ai∗

+ θY

(
1

2
+ nY + a(1− i∗)

) (27)

One quickly notices that both these equations hold true for nX = nY = n, θX = θY = θ
and i∗ = 1

2
, but we do not want to fix i∗. So we have to look at another constellation of

parameters, that ensures (26) and (27) both hold. We find the following two possibilities:
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Constellation 1 Constellation 2
nX = 0 nX = a(1− 2i∗)
nY = a(2i∗ − 1) nY = 0
θX = θY = θ θX = θY = θ
θ = 1−2ai∗

1+2ai∗
θ = 1+2ai∗−2a

1+2a

As nX of Constellation 2 and nY of Constellation 1 could be less than zero for some
parameters, we formulate a general definition for nX and nY , which is equivalent to the
results above:

nX = max{a (1− 2i∗) , 0}
nY = a (2i∗ − 1) + nX

(28)

Furthermore, we can rewrite both θ into one general formula as well:

θ :=
1− 2n

1 + 2n
with n := ai∗ + nX (29)

Thus, ẋ = 0 ⇔ (28) ∧ (29), which is exactly what Proposition 4.3 claims.

Furthermore, there are multiple indicators that imply the existence of a Hopf bifurcation
in the system. For further investigations in that directions, we will use the insights about
the theoretical stationary point (s∗, i∗, 0.5) from Proposition 4.3 and set the parameters
of our model as specified in Table 1.

Parameter Value
α 0.45
β 5
µ 23.05
a 0.1
b 2
nX max{a (1− 2i∗) , 0}
nY a (2i∗ − 1) + nX

θX
1−2(ai∗+nX)
1+2(ai∗+nX)

θY θX

Table 1: Model context for strong negative correlation

Now, define the function antivax (x, i) : [0, 1]2 → R so that it describes the anti-vaccination
impact on ẋ and plot it against x. To do so, we define antivax (x, i) to be the negative
term of the right hand side in (13), when leaving out µ:

antivax (x, i) := −x
θY
(
1− x+ nY + ω (i)

)
(x+ nX + ai) + θY

(
1− x+ nY + ω (i)

)
As one can see quite well in Figure 3, very little changes to i have a massive impact on x.
The black curve depicts the anti-vax impact when plugging in the i-value of the theoret-
ical stationary point we described in Proposition 4.3. The two upper blue curves show
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Figure 3: Anti-Vax Impact vs. Number of Pro-Vaxxers

the effect of plugging in i∗ + 0.01 and i∗ + 0.1, while the two lower red curves were given
i∗ − 0.01 and i∗ − 0.1, respectively. As one can see, a small change i∗ ± ϵ with ϵ = 0.01
already made the x-component slide to 0.4 and 0.6, respectively, whereas ϵ = 0.1 caused
a way more considerable translation towards 0.76 and 0.24, respectively. This leads us
to the conclusion that there is a strong negative correlation between x and i, which is
necessarily needed for a Hopf bifurcation.

Furthermore, when we take a look at the system in all its entirety and let the simulation
begin at s0 = 0.8, i0 = 0.2, x0 = 0.2, oscillations of s, x and i appear. Note that i has
been scaled to 10i in Figure 4, so that the oscillations of i become visible.

As we know from Definition 4.5, a Hopf bifurcation occurs when the two purely imaginary
eigenvalues cross the imaginary axis. This fact can be seen in Figure 5, which depicts the
spectrum of the linearisation Jµ of our model, with respect to µ. Note that the spectrum
seems to only consist of multiple complex conjugated eigenvalue pairs λ1,µ and λ2,µ = λ1,µ.
This is due to the fact that the third eigenvalue λ3,µ (as our model is three-dimensional)
has always been purely real, with λ3,µ < 1, leading to the complex eigenvalues being
indistinguishable when looking at the entire spectrum. As we are only interested in the
complex ones, we zoomed into the spectrum to render the complex eigenvalues more
visible, which is why none of the λ3,µ can be seen in Figure 5.
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Figure 4: Behaviour Over Time of the Combined Model
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4.5 Fitting of the Model on Real Data

We computed the deterministic limit of Model 4.2 in Subsection 4.2 so that we could
analyse its behaviour over time and visualise it quite nicely. We now intend to fit the
model onto real-life data and to see how well it performs. It has been shown in [52, 53],
that weak effect models are better suited for this goal, especially considering realism,
which is why the next step will be to compute the weak effect limit of our model.
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Theorem 4.1 (Weak Effect Limit of the Combined Model). Let Ni, i ∈ {X, Y }
denote the numbers of zealots of opinion X and Y , respectively and N the population size.
Furthermore, let the reinforcement within the model be described by θi = 1 − Θi

N
. For

N → ∞, the density of the invariant measure for the random variable zt =
Xt

N
is given by

ϕ(x) = Ce
1
2
(ΘX+ΘY )x2−ΘXxxNX+Ai−1 (1− x)NY +A−Ai−1 (30)

where C is determined by the prerequisite
∫ 1

0
ϕ(x)dx = 1.

Proof. We take a look back at (19), the Fokker-Planck equation for which we computed
the Kramers-Moyal expansion before. There, the scaling was ni = Ni/N and θi constant
in N. Afterwards, we will use a slightly different scaling which we will prefer for the
Dirichlet limit. We recall the transition rates from (16):

f+(x) :=
θX(x+ nX + ai)

θX(x+ nX + ai) + (1− x+ nY + a(1− i))

f−(x) :=
θY (1− x+ nY + a(1− i))

(x+ nX + ai) + θY (1− x+ nY + a(1− i))

(31)

Thus, the limiting Fokker-Planck equation reads:

∂t
(
u (x, t)

)
= −∂x

(
µu(x, t)

(
(1− x) f+(x)− xf−(x)

))
+

1

2N
∂2x

(
µu(x, t)

(
(1− x) f+(x) + xf−(x)

)) (32)

By rewriting drift and noise term with ni = Ni/N, θi = 1 − Θi

N
, h = 1/N, a = A/N and

neglecting terms of O(N−2) we find (using maxima [54]):

µ(1− x)f+(x)− µxf−(x)

=µ(1− x)
(1− hΘX)(x+ hNX + hAi)

(1− hΘX)(x+ hNX + hAi) +
(
1− x+ hNY + hA(1− i)

)
− µx

(1− hΘY )
(
1− x+ hNY + hA(1− i)

)
(x+ hNX + hAi) + (1− hΘY )

(
1− x+ hNY + hA(1− i)

)
=µ
(
[(ΘX +ΘY )x−ΘX ]x (1− x)− (NX +NY + A)x+ Ai+NX

)
h+O(h2),

while

h
[
µ(1− x)f+(x) + µxf−(x)

]
= µh2x(1− x) +O(h2).

After rescaling time: T = µht, the Fokker-Planck equation (32) becomes

∂T
(
u (x, T )

)
=− ∂x

(
u(x, T )

(
[(ΘX +ΘY )x−ΘX ]x (1− x)− (NX +NY + A)x+ Ai+NX

))
+ ∂2x

(
u(x, T )x(1− x)

)
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For the invariant distribution ϕ(x), the flux of the rescaled Fokker-Planck equation is
zero, that is:

0 = −
(
[(ΘX +ΘY )x−ΘX ]x (1− x)− (NX +NY + A)x+ Ai+NX

)
ϕ(x)

+
d

dx

(
ϕ(x)x (1− x)

)
With v(x) = ϕ(x)x (1− x), we have:

v′(x) =

([
(ΘX +ΘY )x−ΘX

]
+
NX

x
− NY

1− x
+
A(i− x)

x(1− x)

)
v(x)

and hence

v(x) = Ce
1
2
(ΘX+ΘY )x2−ΘXxxNX+Ai (1− x)NY +A−Ai

Respectively,

ϕ(x) = Ce
1
2
(ΘX+ΘY )x2−ΘXxxNX+Ai−1 (1− x)NY +A−Ai−1

With the weak effect limit in hand, we would now like to analyse real-life data. To do
so, we retrieved the vaccination coverage against Meningococcus C in German counties
between 2009 and 2014 from [55] and the matching incidences per county of the disease
from [56]. The next step is to generate values for all of the parameters that occur in
(30), via maximum-likelihood-estimation. The integral that defines C becomes numeri-
cally unstable for large parameter values, so we re-parametrise the distribution, defining
ν̂, ŝ, θ̂, ψ̂, ξ̂ by

ΘX = ŝθ̂ψ̂

ΘY = ŝθ̂(1− ψ̂)

NX − 1 = ŝ(1− θ̂)ν̂(1− ξ̂)

NY − 1 = ŝ(1− θ̂)(1− ν̂)(1− ξ̂)

A = ŝθ̂ξ̂

where ŝ, θ̂, ν̂, ξ̂ ∈ [0, 1] and ŝ > 0, with the restriction ŝ(1− θ̂)ν̂(1− ξ̂) > 1 and
ŝ(1− θ̂)(1− ν̂)(1− ξ̂) > 1. Therewith, the distribution becomes

ϕ(x) = Ĉ exp

[
ŝ

{
θ̂

(
x2

2
− ψ̂x

)
+ ln(x)

(
(1− θ̂)ν̂(1− ξ̂) + θ̂ξ̂i

)
+ ln(1− x)

(
(1− θ̂)(1− ν̂)(1− ξ̂) + θ̂ξ̂(1− i)

)
+B

}]
,

(33)
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where B is a constant depending on the data at hand and chosen in such a manner, that
it avoids an exponent with very large absolute number. The constant Ĉ is, as was C
before, determined by the integral being equal to 1.

We then proceeded with “cleaning” the data, which in our case meant to remove all
vaccination coverage data points with a value below 0.5 and renormalise the data points
which were only in the interval [1

2
, 1] afterwards, so that we stay in the interval [0, 1]

and keep the initial ordering. This step is justified by our assumption that 50% of the
individuals are not ready to change their opinion and a discussion about taking a shot
or not only emerges in the other 50% of the population. Additionally, many German
counties did not have registered incidence values, so we replaced all “non-available” data
points with a dummy value. We set the dummy to be the mean of all available incidence
values, which turned out to be approximately 0.0225. During the first approaches, we
used every county’s own incidence value icounty to compute every county’s distribution
function, leading to every iteration step producing n = 399 curves. We found that all
curves were very close to each other, thus the minimal differences between all the incidence
values that happened in the low one-digit range did not affect the optimisation result very
much. So for simplicity’s sake we decided to recompute the new mean of all incidences
(after all “non-available” data points had been filled up with the dummy) and to use this
as a general incidence value for all counties. After that, we ran our maximum-likelihood
estimation R-Script and performed a Kolmogorov-Smirnov test on the optimised model
with initial parameters ŝinit = 100, ν̂init = θ̂init = ψ̂init = ξ̂init = 0.5. One may have noticed
that vaccination data, especially the one we used, is discrete and our model, as well as
the Kolmogorov-Smirnov test, expect continuous values. This led to the occurrence of
ties in the data set. The optimisation consisted of three runs. First, we set both of
the reinforcement parameters to zero and fell back to the zealot model. Then, we set
both reinforcement parameters to be equal and optimised the equal reinforcement model.
Finally, we let the reinforcements parameters vary freely. The results of our optimisation
can be seen in Figures 6a-c.

We notice that the zealot and equal reinforcement model fit the data in a very similar way,
but both not very well. The Kolmogorov-Smirnov tests for both of these models yielded
p-values in O(10−6), thus they could not be accepted as models of the data. On the
other hand, the full reinforcement model fits remarkably well. The Kolmogorov-Smirnov
test also yielded a p-value of 0.73 for the full-reinforcement model, so we may accept this
model and our distribution (33) as the distribution of the vaccination data.

Of course we do not claim our model to be exhaustive and as is well-known: “no model
is right”. All of the comments, assumptions and claims made in the following base on
the results our work yielded. We did not take a look at additional cofactors, such as
educational or social background or financial status. These are all possible determinants
of behaviour, just as communication and filter bubbles and represent interesting research
topics for further work.
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Figure 6: Data Fits of the Three Different Models

(a) Zealot Model

Vaccination Coverage

D
en
si
ty

(b) Equal Reinforcement

Vaccination Coverage

D
en
si
ty

(c) Full Reinforcement

Vaccination Coverage

D
en
si
ty

5 Discussion

Despite the vast amount of studies and publications that show how diseases can be erad-
icated by vaccination, the large number of casualties that occur in communities with
extremely low vaccination coverage or the practical fact that diseases such as Poliomyeli-
tis in Europe do not represent any dangers to life any more, vaccination hesitancy is still
undermining mankind’s fight against diseases. Classified as one of the Top Ten Threats to
global health in 2019, vaccine hesitancy is the main obstacle between our current situation
and a world with less disease [41]. Even in Germany, where the percentage of anti-vaxxers
is quite low (3-5% according to [22]) herd immunity is by far not reached for every disease
there is a vaccine for. Figure 7 illustrates the example of Meningococcus C and its immu-
nisation rates. As per [57], the required vaccination coverage needed for herd immunity
depends on the infectivity of the disease and its reproduction number R0, but is gener-
ally reached at about 75 - 95% vaccination coverage. The actual coverage in Germany
(from 2009 to 2014) is outside of that range for approximatively half of all districts, espe-
cially in the south-east, where some regions show an absolute low record of 31,62 - 44,24%.
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Figure 7: Immunisation Against Meningococcus C in Germany - Implementation Analysis
in 2013 of the STIKO Recommendations from 2009 to 2014 [55]
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To understand the dynamics of this paradoxical behaviour, this work has taken into con-
sideration the work done by Bauch and Bhattacharyya in [20] as well as by Müller and
Tellier in [47]. The aim was to join the behaviour-incidence approach and the zealot
model with reinforcement to render the compartmental model of Bauch more realistic
when depicting the behaviour of individuals regarding vaccination by adding communica-
tion between individuals and an opinion formation process. Similar work has been done
by Tyson et al. in [58], where the mentioned SIR-Model and its disease dynamics has been
combined with opinion dynamics. Tyson et al. stressed the fact that their model, does not
work with utility or contagion in mind, but emphases the impact of communication and
persuasion. In our model, the aspect of opinion formation and influence through fellow
individuals, social media and filter bubbles, following the ansatz of pay-off functions, was
added to the underlying stochastic process before computing the model dynamics with
the deterministic limit. By doing so, we found that the dynamics are completely disjoint
from the number of recovered individuals. Furthermore, we found several bifurcations
which appear in the model. For a = 0 the model falls back to the results presented in
[47] and undergoes a pitchfork bifurcation, as well as a saddle-node bifurcation. The
presence of a Hopf bifurcation in our system has been indicated by Figures 4 and 5. It
can be stated explicitly with the help of different tools, e.g. xppaut [59]. This insight
shows evidence of oscillations in the system, as can be seen in Figure 4. It would be very
interesting for future work to investigate the existence of a Takens-Bogdanov bifurcation
in the presented system.
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We found a stationary point for a fixed x = 1
2
in our system, as well as a strong correla-

tion between x and i shown in Figure 3. The oscillations of x and i express the varying
immunisation behaviour within the population: when the amount of infected individuals
is low, the disease is not strongly perceived by the population, thus the immunisation
rate drops. The small number of immune subjects will then over time generate a high
rate of infected subjects, which leads to increased disease awareness within the population
and higher immunisation rates. The cycle we can observe here can be interpreted in a
certain manner as the biological equivalent to the “pork cycle” or “cattle cycle” known
from economics [60].

Dong et al. complained about the fact that most studies concerning opinion formation
and opinion dynamics focused on the analysis of simulations, generated with random data
[61]. So in Subsection 4.5, we aimed at fitting our model onto the real-life data retrieved
from [55], visualised in Figure 7 above, and from [56]. As mentioned there, taking into
account every single incidence value of every single county did not have a noticeable im-
pact on the optimisation results compared to using the mean as a general incidence value.
This shows that little changes to the incidence rate do not provoke any changes to the
vaccination rate. Speaking more generally: a small amount of new infected individuals
or a small decrease of the disease’s prevalence will not lead to a change of vaccination
behaviour in the population. This leads us to the assumption that the increase or de-
crease of infections has to surpass a certain threshold before impacting behaviour, thus
the communication between the population has a bigger impact on behaviour, than the
rate of incidence. Furthermore, the very small p-value for the equal reinforcement model
indicates a larger amount of reinforcement usage for the anti-vaxxers, than for the pro-
vaxxers. This matches our expectations and the analogous findings from [47] regarding
populist parties, which are considered to be more firm in their views compared to other
parties.

Filter bubbles and communication seem to play a major role in the dynamics of vaccination
behaviour. An interesting next step would be to reflect on how to minimise or even
destroy these bubbles. As our data showed, the bubbles appear locally, in small subsets
of the entire population, i.e. in counties. A possible measure could be to invest more
in local, small-scaled politics, visit the counties to propagate the scientific findings and
knowledge about the vaccination process and do educational work considering vaccines. A
considerable amount of work has still to be done in this area, in order to raise awareness,
reduce the spread of fake-news and eventually, ban vaccine hesitancy from the top ten
threats to global health.
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[47] J. Müller, V. Hösel, and A. Tellier.
”
Filter Bubbles, Echo Chambers, and Reinforce-

ment: Tracing Populism in Election Data“. 2020.

[48] F. Sano, M. Hisakado, and S. Mori.
”
Mean Field Voter Model of Election to the

House of Representatives in Japan“. In: Proceedings of the Asia-Pacific Econo-
physics Conference 2016 — Big Data Analysis and Modeling toward Super Smart
Society — (APEC-SSS2016). Journal of the Physical Society of Japan, 7122017.
isbn: 4-89027-121-X. doi: 10.7566/JPSCP.16.011016.

[49] H. Risken. The Fokker-Planck Equation: Methods of Solution and Applications. Sec-
ond Edition. Vol. 18. Springer Series in Synergetics. Berlin and Heidelberg: Springer,
1989. isbn: 978-3-642-61544-3. doi: 10.1007/978-3-642-61544-3.

[50] J. A. Kuznetsov. Elements of applied bifurcation theory. 3. ed. Vol. 112. Applied
mathematical sciences. New York, NY: Springer, 2010. isbn: 978-1-4419-1951-9.
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6 Appendix

6.1 R-Script for Figures 3, 4 and 5

1 #
# SIRS model with re in fo r cement

3 #
# Aim :

5 # f ind a Hopf b i f u r c a t i o n
#

7 # parameter
bbeta = 5 # contact ra t e

9 alpha = 0.45 # recovery ra t e
B = 2 # b i r t h r a t e − determines the time s c a l e −− f i x e d .

11

# we c a l i b r a t e the system s . t . x=1/2 i s a s t a t s t a t e s
13 s . s t a r = (B+alpha ) /bbeta ;

i . s t a r = (1−0.5)∗B/ ( alpha+B)−B/bbeta ;
15 cat ( ” i . s t a r = ” , i . s tar , ”\n” ) ;

17 theta1 = 1 ; # re in fo r cement parameter o f pro−vax (x )
theta2 = theta1 ; # re in fo r cement parameter o f ant i−vax (1−x )

19 n1 = 10 ; # z e a l o t s pro vax
n2 = 10 ; # z e a l o t s ant i−vax

21 a = 0 . 1 ; # i n f l u e n c e I
c = 200# 1 ; # time s c a l e r e i n f o r c e

23

# adapt n1 , n2 s . t . a∗ i+n1 = a∗(1− i )+n2
25 # choose n1 minimal , s . t . we have a non−negat ive n2 (=0)

n1 = max( c ( a∗(1−2∗ i . s t a r ) , 0) ) ;
27 n2 = a∗ (2 ∗ i . s tar −1)+n1 ;

n . s t a r = a∗ i . s t a r+n1
29 theta1 = (1−2∗n . s t a r ) /(1+2∗n . s t a r ) ;

theta2 = theta1 ;
31 cat ( ”a=” , a , ”n1=” , n1 , ”n2=” , n2 , ”n . s t a r=” , n . s tar ,

” theta . p ich=” , (1−2∗n . s t a r ) /(1+2∗n . s t a r ) , ”\n” ) ;
33

theo . s t a t . po int = c ( s . s tar , i . s tar , 0 . 5 ) ;
35

37 #i n i t
s = 0 . 8 ;

39 i = 0 . 2 ;
r = 0 ;

41 x = 0 . 2 0 ;

43 s t a t e = c ( s , i , x ) ; # no r−component

45

# rhs o f ODE
47 rhs <− f unc t i on ( s t a t e ) {

s = s t a t e [ 1 ] ; i = s t a t e [ 2 ] ;
49 x = s t a t e [ 3 ] ;

s1 = −bbeta∗ s ∗ i+(1−x ) ∗B−B∗ s ;
51 i 1 = bbeta∗ s ∗ i − alpha ∗ i−B∗ i ;
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x1 = −c∗x∗ theta2 ∗(1−x+n2+a∗(1− i ) ) /
53 ( ( x+n1+a∗ i )+theta2 ∗(1−x+n2+a∗(1− i ) ) ) ;

x1 = x1+c∗(1−x ) ∗ theta1 ∗ ( x+n1+a∗ i ) /
55 ( theta1 ∗ ( x+n1+a∗ i )+(1−x+n2+a∗(1− i ) ) ) ;

57 re turn ( c ( s1 , i1 , x1 ) ) ;
}

59

a lu <− f unc t i on (x , i ) {
61 re turn (

−x∗ theta2 ∗(1−x+n2+a∗(1− i ) ) /
63 ( ( x+n1+a∗ i )+theta2 ∗(1−x+n2+a∗(1− i ) ) )

+(1−x ) ∗ theta1 ∗ ( x+n1+a∗ i ) /
65 ( theta1 ∗ ( x+n1+a∗ i )+(1−x+n2+a∗(1− i ) ) )

) ;
67 }

69 curve ( a lu (x , i . s t a r ) , from=0, to=1) ;
curve ( a lu (x , i . s t a r +0.01) , from=0, to=1, add=TRUE, co l=”blue ” ) ;

71 curve ( a lu (x , i . s t a r +0.1) , from=0, to=1, add=TRUE, co l=”blue ” ) ;
curve ( a lu (x , i . s tar −0.01) , from=0, to=1, add=TRUE, co l=” red ” ) ;

73 curve ( a lu (x , i . s tar −0.1) , from=0, to=1, add=TRUE, co l=” red ” ) ;
ab l i n e (h=0) ;

75

s imul . p l o t<−f unc t i on ( hor i zont ) {
77 # simulate

r e s <<− numeric ( ) ;
79 aver . s t a t = c (0 , 0 , 0 ) ; no . aver = 0 ;

h = 0 . 0 0 1 ; t t = 0 ; h = 0 . 0 1 ;
81 whi le ( tt<hor i zont ) {

s t a t e <<− s t a t e+h∗ rhs ( s t a t e ) ;
83 t t = t t + h ;

r e s <<− rbind ( res , c ( tt , s t a t e ) ) ;
85 i f ( tt>hor i zont / 2) {

aver . s t a t = aver . s t a t + s t a t e ;
87 no . aver = no . aver + 1 ;

}
89 }

91 p lo t ( r e s [ , 1 ] , r e s [ , 2 ] , t=” l ” , yl im=c (0 , 1 ) ,
main = paste ( ”c” , as . cha rac t e r ( c ) ) ,

93 ylab=”S( black ) 10∗ I ( b lue )x ( orange ) ” ) ;

95 l i n e s ( r e s [ , 1 ] , 10∗ r e s [ , 3 ] , t=” l ” , c o l=”blue ” )
l i n e s ( r e s [ , 1 ] , r e s [ , 4 ] , t=” l ” , c o l=”orange ” )

97

s t a t e <<− s t a t e ;
99 aver . s t a t e <<− aver . s t a t /no . aver ;

}
101

103 my. t o l = 1e−6;
max . i t e r = 500000;

105
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107 # simulate to f i nd a s t a t s t a t e
get . s t a t . s t a t e <− f unc t i on ( i n i t . s t a t e ) {

109 # forward s imu la t i on un t i l max i t e r ,
# or | | rhs | | <− my. t o l

111

my. t o l 2 = my. t o l ∗∗ 2 ;
113 my. s t a t e = i n i t . s t a t e ;

h = 0 . 0 1 ;
115

f o r ( i in 1 :max . i t e r ) {
117 l o c . rhs = rhs (my. s t a t e ) ;

i f (sum( l o c . rhs ∗∗ 2)<my. t o l 2 ) {
119 re turn (my. s t a t e ) ;

}
121 my. s t a t e = my. s t a t e+h∗ l o c . rhs ;

}
123 cat ( ”# get . s t a t . s t a t e DID NOT CONVERGE! ! ! \n” ) ;

cat ( ”# ” , l o c . rhs , ”\n” ) ;
125 cat ( ”# get . s t a t . s t a t e DID NOT CONVERGE! ! ! \n” ) ;

127 re turn (my. s t a t e ) ;
}

129

131 get . j a cob ian <− f unc t i on ( s t a t e ) {
# compute jacob ian o f the vec to r f i e e l d at po int ” s t a t e ”

133 # ( ( f 1) x , ( f 2) y , ( f 3) z )
# J = ( ( f 2) x , ( f 2) y , ( f 3) z )

135 # ( ( f 3) x , ( f 2) y , ( f 3) z )
J = matrix (NA, 3 , 3) ;

137 hh = 1e−3;

139 rhsp = rhs ( s t a t e+c (hh , 0 , 0 ) ) ;
rhsm = rhs ( s t a t e+c(−hh , 0 , 0 ) ) ;

141 grad = ( rhsp−rhsm) / (2 ∗hh) ;
J [ 1 , ] = grad ;

143 rhsp = rhs ( s t a t e+c (0 , hh , 0 ) ) ;
rhsm = rhs ( s t a t e+c (0 ,−hh , 0 ) ) ;

145 grad = ( rhsp−rhsm) / (2 ∗hh) ;
J [ 2 , ] = grad ;

147 rhsp = rhs ( s t a t e+c (0 , 0 , hh ) ) ;
rhsm = rhs ( s t a t e+c (0 ,0 ,−hh) ) ;

149 grad = ( rhsp−rhsm) / (2 ∗hh) ;
J [ 3 , ] = grad ;

151

re turn ( J ) ;
153 }

155

##########################################################
157 # go

159 # simulate
i f (1==1){ # change to (1==1) to enable

161
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nnn = 20 ;
163 c . l i s t = 1+49∗ ( 0 : nnn ) /nnn ;

c = c . l i s t [ 1 ] ;
165 a l l . r e s = c ( ) ;

f o r ( i in 1 : ( nnn+1) ) {
167 c = c . l i s t [ i ] ;

169 s t a t e = s t a t e+c ( 0 . 0 , 0 . 0 1 , 0 . 0 )
s imul . p l o t (300) ;

171

J = get . j acob ian ( aver . s t a t e ) ;
173 ev = e igen ( J ) ;

175 a l l . r e s = rbind ( a l l . res ,
c ( c , aver . s ta te , rhs ( aver . s t a t e ) , ev$ va lue s ) ) ;

177 }

179

181 }

183 #generate p l o t
i f (1==1){

185

l 1 . x = c ( ) ; l 1 . y = c ( ) ;
187 l 2 . x = c ( ) ; l 2 . y = c ( ) ;

l 3 . x = c ( ) ; l 3 . y = c ( ) ;
189 f o r ( i in 1 : ( nnn+1) ) {

l 1 . x = c ( l 1 . x , Re( a l l . r e s [ i , 8 ] ) ) ;
191 l 1 . y = c ( l 1 . y , Im( a l l . r e s [ i , 8 ] ) ) ;

l 2 . x = c ( l 2 . x , Re( a l l . r e s [ i , 9 ] ) ) ;
193 l 2 . y = c ( l 2 . y , Im( a l l . r e s [ i , 9 ] ) ) ;

l 3 . x = c ( l 3 . x , Re( a l l . r e s [ i , 1 0 ] ) ) ;
195 l 3 . y = c ( l 3 . y , Im( a l l . r e s [ i , 1 0 ] ) ) ;

}
197 l . x = c ( l 1 . x , l 2 . x , l 3 . x ) ;

l . y = c ( l 1 . y , l 2 . y , l 3 . y ) ;
199

p lo t ( l 1 . x , l 1 . y , xl im=c (−0.05 , 0 . 05 ) , yl im=c (min ( l . y ) ,
201 max( l . y ) ) , x lab=”Re( lambda ) ” , ylab=”Im( lambda ) ” ) ;

po in t s ( l 2 . x , l 2 . y , c o l=”blue ” ) ;
203 po in t s ( l 3 . x , l 3 . y , c o l=” green ” ) ;

ab l i n e (h=0, l t y =3) ; ab l i n e ( v=0, l t y =3) ;
205 }
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6.2 R Scripts used for the Data Fitting and Figure 6

6.2.1 analysis combined model.R

#
2 # Estimate the parameters f o r the combined model .

#
4 # (a ) For each county , e s t imate

# − Zea lot model ( beta−d i s t r i b )
6 # − Al l r e in fo r cement parameters equal

# − Al l parameters can be chosen independent ly .
8 # (b) Compare the models by the log−l i k e l i h o od −r a t i on t e s t

# ( c ) Compare emp i r i c a l and t h e o r e t i c a l d i s t r i b u t i o n s
10 # by the Kolmogorov−Smirnov t e s t s .

#
12

post <− f unc t i on (nme) {
14 # remove blanks

xx = s t r s p l i t (nme , ” ” ) ;
16 nme1 = paste ( xx [ [ 1 ] ] , c o l l a p s e=”” ) ;

cat (nme1 , ”\n” ) ;
18 po s t s c r i p t ( f i l e=nme1 , p o i n t s i z e =32, paper=” s p e c i a l ” ,

width=8, he ight=9, ho r i z on t a l=FALSE) ;
20 }

22 ###############
# read data

24 #
#################

26 vacc ina t i on data = read . csv2 ( ’my path to data/ vacc ina t i on data . csv ’ ,
header=TRUE)

28

###############
30 # read t o o l s

#
32 #################

source ( ”parameter e s t imat i on re in fo r cement .R” ) ;
34

36 ######################################################
# i n i t i a l i s a t i o n ( apply changes ONLY here )

38 ######################################################

40 #i n i t i a l parameters
theta hut . i n i t = 0 . 5 ;

42 p s i hut . i n i t = 0 . 5 ;
k s i hut . i n i t = 0 . 5 ;

44 s hut . i n i t = 100 ;

46

#swi tche s f o r work todo
48 ana lyse = TRUE;

produce . t ab l e = FALSE;
50 produce . f i g u r e s = FALSE;
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52

######################################################
54 # prepare the data

######################################################
56

myDataEsti = c ( ) ;
58 impfer = vacc ina t i on data$Wert [ 1 : 4 0 0 ] ; #l a s t few ones are NA

myDataEsti = impfer / 100 ;
60

#remove a l l va lue s below 0 .5 as we esteem them to be f i x ed vo t e r s
62 myDataEsti=myDataEsti [ myDataEsti >0 . 5 ] ;

64 #renorma l i s e i t , such that 0 .5 −> 0 and 1 −> 1
myDataEsti = myDataEsti ∗ 2 − 1 ;

66

i n c i d en c e s = vacc ina t i on data$ Inz idenz [ 1 : 4 0 0 ] ;
68 i n c no NA = get r i d o f ( i n c i d en c e s ) ;

#get the mean value o f a l l i n c i d en c e s w/o the NA ones
70 dummy. i = mean( inc no NA) ;

72 #rep l a c e a l l NA va lue s in i n c i d en c e s by the dummy. i
i n c i d en c e s = r ep l a c e ( inc idence s ,dummy. i ) ;

74

76 #se t the i n c i d enc e that w i l l be used to the mean o f a l l observed va lue s
i . param = mean( i n c i d en c e s ) ;

78

80 ######################################################
# data f i t

82 ######################################################

84

i f ( ana lyse ) {
86 # check optima

s hut .max=2500;
88

r e s . tab = c ( ) ;
90

92 {
mmean = mean(myDataEsti ) ;

94

96 h i s t (myDataEsti , f r e q = FALSE, n c l a s s =30,
main=” f u l l r e in fo r cement ” ,

98 xlim=c (0 , 1 ) ) ;

100

###################################################################
102 # f i r s t run : e s t imate the f u l l r e in fo r cement model

###################################################################
104 cat ( ” f i r s t run” , ”\n” ) ;

106 #para . r e f in f o l l ow i ng order : nu hut , theta hut , p s i hut , k s i hut , s hut
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para . r e f = c (mean(myDataEsti ) , theta hut . i n i t , p s i hut . i n i t ,
108 k s i hut . i n i t , s hut . i n i t ) ; # de f i n e i n i t para

l l l . l a s t = l l l ( para . r e f ) ;
110 cat ( ” l l l . l a s t : ” , l l l . l a s t , ”\n” ) ;

112 un r e s t r i c t e d . model = TRUE; # we aim at the f u l l model
u n r e s t r i c t . theta hut = TRUE;

114 opt i . c y c l i c ( para . r e f ) ;

116 cat ( l l l . l a s t , ”\n” ) ;
para . unres t = para . l a s t ; # s t o r e the r e s u l t

118 l l l . unres t = l l l . l a s t ;
theta . r e s = theta hut∗ s hut ;

120

# Kolmogorov−Smirnov t e s t
122 r e s . ks = ks . t e s t (myDataEsti , f unc t i on (x ) { pRein force (x ) }) ;

124

###################################################################
126 # second run : r e in fo r cement model , f o r c e equal r e in fo r cement

parameters
###################################################################

128

cat ( ” second run” , ”\n” ) ;
130 para . r e f = c (mean(myDataEsti ) , theta hut . i n i t , p s i hut . i n i t ,

k s i hut . i n i t , s hut . i n i t ) ; # de f i n e i n i t para
132 l l l . l a s t = l l l ( para . r e f ) ;

cat ( l l l . l a s t , ”\n” ) ;
134 h i s t (myDataEsti , f r e q = FALSE, n c l a s s =30,

main=” re in fo r cement with equal r e i n f . params” ,
136 xlim=c (0 , 1 ) ) ;

138 un r e s t r i c t e d . model = TRUE; # we aim at the f u l l model
u n r e s t r i c t . theta hut = FALSE; # we want to keep equal

parameters f o r r e in fo r cement
140 opt i . c y c l i c ( para . r e f ) ;

cat ( l l l . l a s t , ”\n” ) ;
142 para . h a l fR e s t r i c t = para . l a s t ; # s t o r e the r e s u l t

l l l . h a l fR e s t r i c t = l l l . l a s t ;
144 theta . r e s = theta hut∗ s hut ;

146 # Kolmogorov−Smirnov t e s t
r e s . h a l fR e s t r i c t . ks = ks . t e s t (myDataEsti , f unc t i on (x ) { pRein force (x ) })

;
148

150 ###################################################################
# th i rd run : e s t imate the z e a l o t model ( beta−d i s t r i b )

152 ###################################################################

154 cat ( ” th i rd run” , ”\n” ) ;
un r e s t r i c t e d . model = FALSE; # we f i x a l l r e in forcement−

paras
156 un r e s t r i c t . theta hut = FALSE;
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158 theta hut . z e a l o t = 0 ;

160 para . r e f = c (mean(myDataEsti ) , theta hut . z ea l o t , p s i hut . i n i t ,
k s i hut . i n i t , s hut . i n i t ) ;

162 h i s t (myDataEsti , f r e q = FALSE, n c l a s s =30,
main=” z e a l o t model” ,

164 xlim=c (0 , 1 ) ) ;

166 opt i . c y c l i c ( para . r e f ) ;
cat ( ” l l l . l a s t : ” , l l l . l a s t , ”\n” ) ;

168 para . r e s t r i c t = para . l a s t ; # s t o r e r e s u l t
l l l . r e s t r i c t = l l l . l a s t ;

170

# kolmogorov−smirnov−t e s t
172 r e s . r e s t r i c . ks = ks . t e s t (myDataEsti , f unc t i on (x ) { pRein force ( x ) }) ;

174 l i n e = c ( ”run” , ”pro−vaxx” ,
theta . res ,

176 para . unrest ,
l l l . unrest ,

178 para . h a l fR e s t r i c t ,
l l l . h a l fR e s t r i c t ,

180 para . r e s t r i c t ,
l l l . r e s t r i c t ,

182 pch i sq (2 ∗ ( l l l . unrest− l l l . r e s t r i c t ) , d f=2,
lower . t a i l=FALSE) ,

184 pch i sq (2 ∗ ( l l l . unrest− l l l . h a l f R e s t r i c t ) , d f=2,
lower . t a i l=FALSE) ,

186 r e s . ks$p . value ,
r e s . h a l fR e s t r i c t . ks$p . value ,

188 r e s . r e s t r i c . ks$p . va lue
) ;

190

r e s . tab = rbind ( r e s . tab , l i n e ) ;
192 }

# names o r i e n t themse lves ar the supplement I I o f the paper
194 c o l . names = c (

”run” , ” op in ion ” ,
196 ”Theta1PlusTheta2 . unr” ,

”nu . unr” , ” theta . hat . unr” , ” p s i . unr” , ” k s i . unr” , ” s . unr” ,
198 ” l l l . unr” ,

”nu . h a l f r ” , ” theta . hat . h a l f r ” , ” p s i . h a l f r ” , ” k s i . h a l f r ” , ” s . h a l f r ” ,
200 ” l l l . h a l f r ” ,

”nu . r e s t r ” , ” theta . hat . r e s t r ” , ” p s i . r e s t r ” , ” k s i . r e s t r ” , ” s . r e s t r ” ,
202 ” l l l . r e s t r ” ,

” l l l . unr . r e s t ” , ” l l l . unr . h a l f r ” ,
204 ”ks . unres ” , ”ks . ha l fRe s t r ” , ”ks . r e s t r ” ) ;

dimnames ( r e s . tab ) [ [ 2 ] ] =co l . names ;
206

save ( f i l e=”datAnaCombinedModel . rSave” , r e s . tab ) ;
208

}
210

212



6.2 R Scripts used for the Data Fitting and Figure 6 45

i f ( produce . t ab l e ) {
214 # produce a tab l e

load ( f i l e=”datAnaMyModel V1 . rSave” ) ;
216 s ink ( f i l e=”datCombinedModel . tex ” ) ;

cat ( dimnames ( r e s . tab ) [ [ 2 ] ] [ c ( 1 , 2 , 4 , 5 , 6 , 7 , 8 ) ] ) ; cat ( ” theta1 ” ) ;
218 cat ( ” theta2 ” ) ; cat ( dimnames ( r e s . tab ) [ [ 2 ] ] [ c (22 ,24 ,26) ] ) ;

cat ( ”\n” ) ;
220 nn = dim( r e s . tab ) [ 1 ] ;

f o r ( j in 1 : nn ) {
222 cat ( r e s . tab [ j , 1 ] , ” & ” , r e s . tab [ j , 2 ] , ” & ” ) ;

cat ( r e s . tab [ j , 4 ] , ” & ” , r e s . tab [ j , 5 ] , ” & ” ) ;
224 cat ( r e s . tab [ j , 6 ] , ” & ” , r e s . tab [ j , 7 ] , ” & ” , r e s . tab [ j , 8 ] , ”&” ) ;

# theta 2 = h . s ∗h . theta ∗(1−h . p s i )
226 cat ( as . double ( r e s . tab [ j , 5 ] ) ∗ as . double ( r e s . tab [ j , 8 ] ) ∗

as . double ( r e s . tab [ j , 6 ] ) , ” & ” ) ;
228 cat ( as . double ( r e s . tab [ j , 5 ] ) ∗ as . double ( r e s . tab [ j , 8 ] ) ∗

(1−as . double ( r e s . tab [ j , 6 ] ) ) , ” & ” ) ;
230 cat ( as . double ( r e s . tab [ j , 2 2 ] ) , ” & ” ,

as . double ( r e s . tab [ j , 2 4 ] ) , ” & ” ,
232 as . double ( r e s . tab [ j , 2 6 ] ) ,

”\\\\\n” ) ;
234 }

236 cat ( ”Test hat . p s i =0.5 ver sus f r e e model ( where i s the re in fo r cement ?) \n
” ) ;

cat ( as . double ( r e s . tab [ j , 2 3 ] ) , ” \n” ) ;
238

s ink ( ) ;
240

}
242

244

i f ( produce . f i g u r e s ) {
246 # produce f i g u r e s

impfer = vacc ina t i on data$Wert [ 1 : 4 0 0 ] ;
248 myDataEsti = impfer / 100 ;

mmean <<− mean(myDataEsti ) ;
250

post ( paste ( ”Combined model” , as . cha rac t e r ( j ) , ” . eps ” , sep=”” ) ) ;
252 h i s t (myDataEsti , f r e q = FALSE,

main=paste ( ”Vacc inat i ona l behaviour ” ) ,
254 xlim=c (0 , 1 ) , x lab=”amount o f pro−vaxxers x” , n c l a s s =30) ;

256 para . l a s t = as . double ( r e s . tab [ j , 4 : 8 ] ) ;

258 l l l . l a s t = l l l ( para . l a s t ) ;
cat ( l l l . l a s t , ”\n” ) ; mmean <<− mean(myDataEsti ) ;

260

curve ( g (x ) , add=TRUE, lwd=2) ;
262

para . l a s t = as . double ( r e s . tab [ j , 1 6 : 2 0 ] ) ;
264 l l l . l a s t = l l l ( para . l a s t ) ;

cat ( l l l . l a s t , ”\n” ) ;
266 curve ( g (x ) , add=TRUE, lwd=2, l t y =2) ;
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dev . o f f ( ) ;
268

270 post ( paste ( ”Combined model 2” , as . cha rac t e r ( j ) , ” . eps ” , sep=”” ) ) ;
h i s t (myDataEsti , f r e q = FALSE,

272 main=paste ( ”Vacc inat i ona l behaviour ” ) ,
xl im=c (0 , 1 ) , x lab=”amount o f pro−vaxxers x” , n c l a s s =30) ;

274

para . l a s t = as . double ( r e s . tab [ j , 4 : 8 ] ) ;
276

l l l . l a s t = l l l ( para . l a s t ) ;
278 cat ( l l l . l a s t , ”\n” ) ; mmean <<− mean(myDataEsti ) ;

280 curve ( g (x ) , add=TRUE, lwd=2) ;

282 para . l a s t = as . double ( r e s . tab [ j , 1 0 : 1 4 ] ) ;
l l l . l a s t = l l l ( para . l a s t ) ;

284 cat ( l l l . l a s t , ”\n” ) ;
curve ( g (x ) , add=TRUE, lwd=2, c o l = ” green ” ) ;

286

para . l a s t = as . double ( r e s . tab [ j , 1 6 : 2 0 ] ) ;
288 l l l . l a s t = l l l ( para . l a s t ) ;

cat ( l l l . l a s t , ”\n” ) ;
290 curve ( g (x ) , add=TRUE, lwd=2, l t y =2) ;

dev . o f f ( ) ;
292 }

6.2.2 parameter estimation reinforcement.R

2 #
# Estimate the parameters f o r the re in fo r cement model

4 #####################################################################
#

6 # gene ra l f un c t i on s
#

8 #####################################################################

10 #
# myDataEsti : vec to r with va lue s in (0 , 1 ) ; the data i t uses f o r the

e s t imat i on
12 #

14 r ep l a c e <− f unc t i on ( vector , replacement ) {
f o r ( i in 1 : l ength ( vec to r ) ) {

16 i f ( i s . na ( vec to r [ i ] ) ) {
vec to r [ i ] = replacement ;

18 }
}

20 re turn ( vec to r ) ;
}

22
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get r i d o f <− f unc t i on ( vec to r ) {
24 vec to r no NA = c ( ) ;

l a s t index = 1 ;
26 f o r ( i in 1 : l ength ( vec to r ) ) {

i f ( ! i s . na ( vec to r [ i ] ) ) {
28 vec to r no NA[ l a s t index ] = vecto r [ i ] ;

l a s t index = l a s t index + 1 ;
30 }

}
32 re turn ( vec to r no NA) ;

}
34

post <− f unc t i on (nme) {
36 # remove blanks

xx = s t r s p l i t (nme , ” ” ) ;
38 nme1 = paste ( xx [ [ 1 ] ] , c o l l a p s e=”” ) ;

cat (nme1 , ”\n” ) ;
40 po s t s c r i p t ( f i l e=nme1 , p o i n t s i z e =28, paper=” s p e c i a l ” ,

width=8, he ight=9, ho r i z on t a l=FALSE) ;
42 }

44 ##################
#

46 # de f i n e d i s t r i b u t i o n
#

48 ##################

50 s hut .max = 2000 ;

52 f . norm <− f unc t i on ( ) {
# an add i t i v e constant to avoid l a r g e numbers

54 # in the exponent ; t h i s number i s chosen in dependence
# on the mean value o f the data at hand .

56 x = mmean ;
re turn (−1∗ ( s hut∗ theta hut∗ ( 0 . 5 ∗x∗∗2−phi hut∗x )

58 +log (x ) ∗((1− theta hut ) ∗nu hut∗(1− k s i hut )+nu hut∗ k s i hut∗ i . param) ∗ s hut
+log (1−x ) ∗((1− theta hut ) ∗(1−nu hut ) ∗(1− k s i hut )+nu hut∗ k s i hut∗(1− i .

param) ) ∗ s hut )
60 ) ;

}
62

f <− f unc t i on (x ) {
64 re turn (

exp ( s hut∗ theta hut∗ ( 0 . 5 ∗x∗∗2−phi hut∗x )
66 +log (x ) ∗((1− theta hut ) ∗nu hut∗(1− k s i hut )+nu hut∗ k s i hut∗ i . param) ∗ s hut

+log (1−x ) ∗((1− theta hut ) ∗(1−nu hut ) ∗(1− k s i hut )+nu hut∗ k s i hut∗(1− i .
param) ) ∗ s hut +f . norm ( )

68 )
) ;

70 }

72 get . cc <− f unc t i on ( ) {
# get the norma l i s a t i on constant

74 CC=( i n t e g r a t e ( f , lower=10∗∗−6,upper=1−10∗∗−6)$ value ) ∗∗(−1) ;
r e turn (CC) ;
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76 }

78

g<−f unc t i on (x ) {
80 # dens i ty ( note : CC i s computed us ing the constant f . norm ( ) .

# That constant c anc e l s at the end o f the day .
82 re turn (

CC∗
84 exp ( s hut∗ theta hut∗ ( 0 . 5 ∗x∗∗2−phi hut∗x )

+log (x ) ∗((1− theta hut ) ∗nu hut∗(1− k s i hut )+nu hut∗ k s i hut∗ i . param) ∗ s hut
86 +log (1−x ) ∗((1− theta hut ) ∗(1−nu hut ) ∗(1− k s i hut )+nu hut∗ k s i hut∗(1− i .

param) ) ∗ s hut +f . norm ( )
)

88 ) ;
}

90

l l l . dat <− f unc t i on (x , nu hut , theta hut , phi hut , k s i hut , s hut , CC) {
92 # log l i k e l i h o o d f o r one s i n g l e data po int x

return (
94 s hut∗ theta hut∗ ( 0 . 5 ∗x∗∗2−phi hut∗x )

+log (x ) ∗((1− theta hut ) ∗nu hut∗(1− k s i hut )+nu hut∗ k s i hut∗ i . param) ∗ s hut
96 +log (1−x ) ∗((1− theta hut ) ∗(1−nu hut ) ∗(1− k s i hut )+nu hut∗ k s i hut∗(1− i .

param) ) ∗ s hut
+log (CC)+f . norm ( )

98 ) ;
}

100

pRein force . l o c <− f unc t i on (x ) {
102 # parameters g iven by g l oba l parameters ;

# pa r t i c u l a r l y , CC i s de f ined .
104 r e s = i n t e g r a t e ( g , lower = 0 , upper = x) ;

r e turn ( r e s $ value ) ;
106 }

108 pRein force <− f unc t i on (x ) {
re turn ( sapply (x , pRe in force . l o c ) ) ;

110 }

112 #######################
# est imate paras :

114 # nu hut , theta hut , phi hut , k s i hut , B
########################

116 theta hut .max = 1800 ;
theta hut .max = 1900 ;

118 tryCatch .W.E <− f unc t i on ( expr ) {
W <− NULL

120 w. handler <− f unc t i on (w) { # warning handler
W <<− w

122 invokeRestar t ( ”muffleWarning” )
}

124 l i s t ( va lue = withCal l ingHandle r s ( tryCatch ( expr , e r r o r = func t i on ( e ) e ) ,
warning = w. handler ) ,

126 warning = W)
}

128
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# compute log l i k e l i h o o d
130 l l l <− f unc t i on ( para ) {

ppara <<− para ;
132 nu hut <<− para [ 1 ] ;

theta hut <<− para [ 2 ] ;
134 phi hut <<− para [ 3 ] ;

k s i hut <<− para [ 4 ] ;
136 s hut <<− min( s hut .max , abs ( para [ 5 ] ) ) ;

OK = TRUE;
138 aa = tryCatch .W.E( get . cc ( ) ) ;

aa <<− aa ;
140 i f ( ! ( i s . double ( aa$ value ) )>0) re turn (−10000) ;

CC<<− aa$ value ;
142

re turn (sum( l l l . dat (myDataEsti , nu hut , theta hut , phi hut , k s i hut , s hut ,
CC) ) ) ;

144 }

146

#
148 # fo r the opt imiza t i on : vary only one o f the parameters

#
150 search . p1 <− f unc t i on (px ) {

# para . l a s t g i v e s the framework ; we modify parameter 1 only
152 pxx = para . l a s t ; pxx [ 1 ] = px ;

re turn ( l l l ( pxx ) ) ;
154 }

search . p2 <− f unc t i on (px ) {
156 # para . l a s t g i v e s the framework ; we modify parameter 2 only

pxx = para . l a s t ; pxx [ 2 ] = px ;
158 re turn ( l l l ( pxx ) ) ;

}
160 search . p3 <− f unc t i on (px ) {

# para . l a s t g i v e s the framework ; we modify parameter 3 only
162 pxx = para . l a s t ; pxx [ 3 ] = px ;

re turn ( l l l ( pxx ) ) ;
164 }

search . p4 <− f unc t i on (px ) {
166 # para . l a s t g i v e s the framework ; we modify parameter 4 only

pxx = para . l a s t ; pxx [ 4 ] = px ;
168 re turn ( l l l ( pxx ) ) ;

}
170

172

############################################
174 #

# opt im i sa t i on
176 #

############################################
178

opt i . c y c l i c <− f unc t i on ( para . i n i t ) {
180 # opt imi se c y c l i c a l l y the parameters .

#
182 # we have d i f f e r e n t modes
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# unr e s t r i c t e d . model == FALSE: f i x a l l parameters expect o f s hut , and
nu hut => we can take

184 # the re in fo r cement to zero and f i t a beta
d i s t r i b u t i o n .

# un r e s t r i c t . theta hut == TRUE: a l low theta hut to vary .
186 # ( i f FALSE: we can f i x theta hut=0.5 , and

in t h i s way ,
# try to f i nd out where the r e in fo r cement

takes p lace )
188

mmean <<− mean(myDataEsti ) ;
190

para . l a s t <− para . i n i t ;
192 l l l . l a s t <− l l l ( para . r e f ) ;

l a s t . s hut = −1; no . s hut . const = 0 ; l a s t . l l l =−1e10 ;
194 f e r t i g = FALSE;

196 i = 0 ;
whi l e ( ( i <10000)&( f e r t i g==FALSE) ) {

198 i = i +1;
cat ( ”para . l a s t : ” , para . l a s t , ”\n” ) ;

200 l l l . x = l l l . l a s t ;
para . l a s t <<− para . l a s t ;

202 r e s1 = opt imize ( search . p1 , i n t e r v a l=c (0 , 1 ) , maximum=TRUE) ;
para . l o c1 = para . l a s t ; para . l o c1 [1 ]= re s1 $maximum;

204 l l l . l ok = l l l ( para . l o c1 ) ;
i f ( l l l . lok> l l l . l a s t ) {

206 para . l a s t <− para . l o c1 ;
l l l . l a s t <− l l l . l ok ;

208 }

210 ##opt imize k s i
para . l a s t <<− para . l a s t ;

212 r e s4 = opt imize ( search . p4 , i n t e r v a l=c (0 , 1 ) , maximum=TRUE) ;
para . l o c4 = para . l a s t ; para . l o c4 [4 ]= re s4 $maximum;

214 l l l . l ok = l l l ( para . l o c4 ) ;
i f ( l l l . lok> l l l . l a s t ) {

216 para . l a s t <− para . l o c4 ;
l l l . l a s t <− l l l . l ok ;

218 }

220 i f ( u n r e s t r i c t e d . model ) {
para . l a s t <<− para . l a s t ;

222 r e s2 = opt imize ( search . p2 , i n t e r v a l=c (0 , 1 ) , maximum=TRUE) ;
para . l o c2 = para . l a s t ; para . l o c2 [2 ]= re s2 $maximum;

224 l l l . l ok = l l l ( para . l o c2 ) ;
i f ( l l l . lok> l l l . l a s t ) {

226 para . l a s t <− para . l o c2 ;
l l l . l a s t <− l l l . l ok ;

228 }

230 i f ( u n r e s t r i c t . theta hut ) {
para . l a s t <<− para . l a s t ;

232 r e s3 = opt imize ( search . p3 , i n t e r v a l=c (0 , 1 ) , maximum=TRUE) ;
para . l o c3 = para . l a s t ; para . l o c3 [3 ]= re s3 $maximum;
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234 l l l . l ok = l l l ( para . l o c3 ) ;
i f ( l l l . lok> l l l . l a s t ) {

236 para . l a s t <− para . l o c3 ;
l l l . l a s t <− l l l . l ok ;

238 }
}

240 }

242 l l l . 1 = l l l ( para . l a s t ) ;
Delta = 0 . 0 1 ;

244 i f ( para . l a s t [5 ]>10) Delta =0.1 ;
i f ( para . l a s t [5 ]>50) Delta =0.5 ;

246 i f ( para . l a s t [5 ]>100) Delta=1;

248 l l l . p2 = l l l ( para . l a s t+c (0 , 0 , 0 ,0 , Delta ) ) ;
l l l .m2 = l l l ( para . l a s t+c (0 , 0 , 0 , 0 , −Delta ) ) ;

250 i f ( l l l . p2> l l l . 1 ) {
para l . l o c3 = para . l a s t+c (0 , 0 , 0 , 0 , Delta ) ;

252 para . l a s t = para . l a s t+c (0 , 0 , 0 , 0 , Delta ) ;
l a s t . l l l = l l l . p2 ;

254 } e l s e {
i f ( l l l .m2> l l l . 1 ) {

256 para l . l o c3 = para . l a s t+c (0 ,0 ,0 ,0 , − Delta ) ;
para . l a s t <− para . l a s t+c (0 ,0 ,0 ,0 , − Delta ) ;

258 l a s t . l l l <− l l l .m2
} e l s e {

260 para l . l o c3 = para . l a s t+c (0 , 0 , 0 , 0 , 0 ) ;
para . l a s t <− para . l a s t+c (0 , 0 , 0 , 0 , 0 ) ;

262 l a s t . l l l <− l l l . 1
}

264 }
i f ( l a s t . s hut !=para . l a s t [ 3 ] ) {

266 l a s t . s hut = para . l a s t [ 3 ] ;
no . s hut . const = 0 ;

268 l l l . x =l a s t . l l l ;
} e l s e {

270 no . s hut . const = no . s hut . const +1;
l o c . l l l = l l l ( para . l a s t ) ;

272 i f ( l a s t . l l l > l l l . x+1e−6) {
no . s hut . const = 0 ;

274 }
i f ( no . s hut . const >100) f e r t i g=TRUE;

276 }

278 para . l a s t <<− para . l a s t ;
l l l . l a s t <<− l a s t . l l l ;

280 cat ( i , ” ” , l l l ( para . l a s t ) , ”\n” ) ;

282 i f ( f e r t i g ) {
curve ( g (x ) , add=TRUE, co l=” red ” ) ;

284 }

286 }
}
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